Observing Extended Source with the Herschel SPIRE FTS

Ronin Wu AIM, Service d'Astrophysique, CEA Saclay

All contents are from Wu et al. 2013 (to be submitted soon!)

R. Wu¹, E. T. Polehampton^{2,3}, M. Etxaluze⁴, G. Makiwa³, D. A. Naylor³, C. Salji^{2,5}, B. M. Swinyard^{3,6}, M. Ferlet², M. H. D. van der Wiel³, A. J. Smith¹¹, T. Fulton^{3,11}, M. J. Griffin⁸, J.-P. Baluteau⁹, D. Benielli⁹, R. Hopwood⁷, P. Imhof^{3,11}, T. Lim², N. Lu¹², P. Panuzzo¹ C. Pearson², S. Sidher², I. Valtchanov¹⁰

Outline

- How do source-beam coupling appear?
- How to correct for source light profile?
- What about the beam efficiency?
- What can we learn from the defect?
- Two examples: M82 and Sgr B2
- Conclusion

Source-beam Coupling

An indication of the source distribution

Derivation of Correction

Forward coupling efficiency: (Ulich & Haas 1976)

$$\eta_f = \frac{\iint\limits_{2\pi} P_{\nu}(\Psi - \Omega_0) D_{\nu}(\Psi) \,\mathrm{d}\Psi}{\iint\limits_{2\pi} P_{\nu}(\Psi) \,\mathrm{d}\Psi}$$

The two intrinsic calibration schemes from the pipeline (I_{ext}: extended; F_{point}: point-like)

Beam coupling efficiency

Beam coupling efficiency η_c .

Size estimate

$$\chi^{2}(\theta_{D}) = \sum_{i} \frac{F_{SLW}(\nu_{i}, \theta_{D}) - F_{SSW}(\nu_{i}, \theta_{D})}{\sigma_{SLW}(\nu_{i})^{2} + \sigma_{SSW}(\nu_{i})^{2}}$$

Estimated size is ~6% larger

A hint of source light profile

Size estimate limitation

16.6" **42**"

Uncertainty due to η_c

Sources can be taken as extended at $\theta_D > 42''$

M82 and Sgr B2

M82

Sgr B2

8

Conclusion

- Source-beam coupling creates a visible discontinuity from SSW to SLW.
- Spectra can be corrected by assuming a light profile of source.
- For small sources (<18"), $\eta_c \sim 1$, larger sources are uncertain.
- The discontinuity can be used to estimate the source geometry.
- The correction works well on M82 and Sar