Optical modeling of standing waves in HIFI.

Bertrand Delforge^{1,2} b.delforge@sron.nl

¹SRON Netherlands Institute for Space Research

²Kapteyn Astronomical Institute

2013-03-27, Herschel Calibration Workshop

Outline

Part I

Origins and effects of standing waves

2 Wavelength dependency.

Calibration scheme fails.

oCeti obsID 1342225913, pol = H

oCeti obsID 1342239298, pol = H

oCeti obsID 1342239296, pol = H

2 Wavelength dependency.

Wavelength dependency.

Calibration scheme fails.

Recipe for standing waves.

Two ingredients. reflections + coherence = $\begin{cases} standing waves \\ interferences \\ fringes \\ ripples \end{cases}$ The wave interferes with its reflections.

Is HIFI coherent?

- Local oscillator line: yes, by construction.
- Sky, LO noise, calibration black bodies: a priori no (thermal).

Coherence length for $\Delta f = 1 \,\mathrm{MHz}$ at $f = 1 \,\mathrm{THz}$

Coherence achieved.

Longest cavity: 1.5 m. After 10 travels: $15 \text{ m} \ll L$. The noise is coherent enough to interfere.

Is HIFI coherent?

- Local oscillator line: yes, by construction.
- Sky, LO noise, calibration black bodies: a priori no (thermal).

Coherence length for $\Delta f = 1 \,\mathrm{MHz}$ at $f = 1 \,\mathrm{THz}$

Coherence achieved.

Longest cavity: 1.5 m. After 10 travels: $15 \text{ m} \ll L$. The noise is coherent enough to interfere.

Is HIFI coherent?

- Local oscillator line: yes, by construction.
- Sky, LO noise, calibration black bodies: a priori no (thermal).

Coherence length for $\Delta f = 1 \,\mathrm{MHz}$ at $f = 1 \,\mathrm{THz}$

Coherence achieved.

Longest cavity: 1.5 m. After 10 travels: $15 \text{ m} \ll L$. The noise is coherent enough to interfere. Coherence.

Wavelength dependency.

Calibration scheme fails.

Not unusual.

Natural light, a priori incoherent, interferes anyway in a soap bubble.

Outline

2 Wavelength dependency.

Coherence.

Wavelength dependency.

Calibration scheme fails.

Infinite reflections.

Standing wave pattern.

Period and cavity length.

$$T_{\text{standing wave}} = \frac{c}{2L_{\text{cavity}}}$$

NOT A SINE.

High-quality cavities have narrow resonnance frequencies.

Outline

2) Wavelength dependency.

Standing waves should calibrate out.

3-points calibration (off, hot, cold):

$$P = K \frac{(P_{\rm on} G_{\rm on} + P_{\rm LO} G_{\rm LO}) - (P_{\rm off} G_{\rm off} + P_{\rm LO} G_{\rm LO})}{(P_{\rm hot} G_{\rm hot} + P_{\rm LO} G_{\rm LO}) - (P_{\rm cold} G_{\rm cold} + P_{\rm LO} G_{\rm LO})}.$$

If P_{LO} is constant and $G_{on} = G_{off} = G_{hot} = G_{cold}$ then all the *G*ains disappear:

$$P = K \frac{P_{\rm on} - P_{\rm off}}{P_{\rm hot} - P_{\rm cold}}.$$

The continuum should not show a standing wave pattern.

Why the calibration does not clean the continuum.

Reason 1.

The calibration black bodies are not black enough.

They introduce cavities that do not exist on the sky path. $G_{\text{hot}} \neq G_{\text{cold}} \neq G_{\text{sky}}.$

$$P = K \frac{(P_{\rm on} - P_{\rm off}) G_{\rm sky}}{(P_{\rm hot} G_{\rm hot}) - (P_{\rm cold} G_{\rm cold})}.$$

Why the calibration does not clean the continuum.

Reason 2.

The LO power is not always stable.

 $P_{\rm LO}$ differs for each spectrum entering the calibration.

$$P = K \frac{(P_{\rm on} \, G_{\rm on} + P_{\rm LO1} \, G_{\rm LO}) - (P_{\rm off} \, G_{\rm off} + P_{\rm LO2} \, G_{\rm LO})}{(P_{\rm hot} \, G_{\rm hot} + P_{\rm LO3} \, G_{\rm LO}) - (P_{\rm cold} \, G_{\rm cold} + P_{\rm LO4} \, G_{\rm LO})}$$

Why the calibration does not clean the continuum.

Reason 3.

The reflectivity of the mixer changes. Mixer biased with a fixed voltage U. Mixer current I varies with LO power. Impedance Z = U/I varies with LO power. Reflection coefficient $\Gamma = \frac{Z-Z_s}{Z+Z_s}$ varies with LO power. All the gains differ.

$$P = K \frac{(P_{\text{on}} G_{\text{on}} + P_{\text{LO1}} G_{\text{LO1}}) - (P_{\text{off}} G_{\text{off}} + P_{\text{LO2}} G_{\text{LO2}})}{(P_{\text{hot}} G_{\text{hot}} + P_{\text{LO3}} G_{\text{LO3}}) - (P_{\text{cold}} G_{\text{cold}} + P_{\text{LO4}} G_{\text{LO4}})}$$

Wavelength dependency.

Calibration scheme fails.

Continuum of Mars, band 3.

Taken from a map of Mars, the LO had thermalized.

Mixer current vs time during the entire mapping observation.

Wavelength dependency.

Calibration scheme fails.

Continuum of Mars, band 3.

Taken from another map of Mars, LO not thermalized yet.

Continuum.

Mixer current vs time during the entire mapping observation.

Coherence.

Wavelength dependency.

Calibration scheme fails.

How do we clean that?

Fit-subtract sines is not science. It is photoshop.

Wave properties.	Representing a network.	Cascading networks.	Ellipsis.	Conclusion.

Part II

The model.

Outling				
	000	000		
Wave properties.	Representing a network.	Cascading networks.	Ellipsis.	Conclusion.

- Wave properties.
- 5 Representing a network.
- 6 Cascading networks.

Wave properties.	Representing a network.	Cascading networks.	Ellipsis. O	Conclusion. O
Outline				

- 4 Wave properties.
 - B Representing a network.
- 6 Cascading networks.

Wave properties.	Representing a network.	Cascading networks.	Ellipsis.	Conclusion.
•				

Wave properties that matter.

Mandatory.

- Direction of propagation.
- Amplitude or power.
- Polarization.
- Phase.

Nice to have.

• Shape of the wave front.

Wave properties. O	Representing a network.	Cascading networks.	Ellipsis. O	Conclusion. O
Outline				

- Wave properties.
- **5** Representing a network.
 - 6 Cascading networks.

Wave p	roperties.	Representing a network.	Cascading networks.	Ellipsis.	Conclusion.
		000			

Scattering matrices handle ports.

Model the transfer of intensity and phase between network ports.

Scattering matrix.

Scattering matrix of an *n*-ports network.

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} S_{1,1} & S_{1,2} & \dots & S_{1,n} \\ S_{2,1} & S_{2,2} & \dots & S_{2,n} \\ \dots & \dots & \ddots & \dots \\ S_{n,1} & S_{n,2} & \dots & S_{n,n} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Drawback.

All the parameters are scalar.

 \implies Does not understand polarization unless triple the ports.

Wave properties.	Representing a network.	Cascading networks.	Ellipsis.	Conclusion.
	000			

Making scattering matrices aware of polarization.

I replace the scalar parameters with 3D Jones vectors and matrices.

Two-ports network, in 3D.

$$S = \begin{pmatrix} \begin{pmatrix} b_{1,x} \\ b_{1,y} \\ b_{1,z} \end{pmatrix} \\ \begin{pmatrix} b_{2,x} \\ b_{2,y} \\ b_{2,z} \end{pmatrix} \\ S = \begin{pmatrix} \begin{pmatrix} S_{1,1,x,x} & S_{1,1,x,y} & S_{1,1,x,z} \\ S_{1,1,y,x} & S_{1,1,y,y} & S_{1,1,y,z} \\ S_{1,1,z,x} & S_{1,1,z,y} & S_{1,1,z,z} \\ S_{2,1,x,x} & S_{2,1,x,y} & S_{2,1,x,z} \\ S_{2,1,x,x} & S_{2,1,z,y} & S_{2,1,z,z} \end{pmatrix} \begin{pmatrix} S_{1,2,x,x} & S_{1,2,x,y} & S_{1,2,x,z} \\ S_{1,2,y,x} & S_{1,2,y,y} & S_{1,2,z,z} \\ S_{2,2,x,x} & S_{2,2,x,y} & S_{2,2,x,z} \\ S_{2,2,x,x} & S_{2,2,y,y} & S_{2,2,y,z} \\ S_{2,2,z,x} & S_{2,2,z,y} & S_{2,2,z,z} \end{pmatrix} \end{pmatrix}$$

vvave properties. Repres	enting a network. Cascading netw	orks. Ellipsis.	Conclusion.
0 000			

Scattering matrix of 3D Jones matrices.

One single entity to manage

- amplitude,
- phase,
- polarization,
- ports,
- orientation in space.

Wave properties. O	Representing a network.	Cascading networks.	Ellipsis. O	Conclusion. O
Outline				

6 Cascading networks.

Wave properties.	Representing a network.	Cascading networks. ●○○	Ellipsis. O	Conclusion. O
Cascading	networks			

Figure: Two networks A and B connected by one port form a new network C.

Challenge.

Compute the scattering matrix of C.

		000	0	0
Cascading ne	etworks.			

After re-numbering the indices:

$$\begin{aligned} \forall (i,j) \in \left(\begin{bmatrix} 1, n_A + n_B \end{bmatrix} - \{\alpha,\beta\} \right)^2 \\ C_{i,j} = \begin{cases} A_{i,\alpha} R_A B_{\beta,\beta} A_{\alpha,j} + A_{i,j} & \text{if } i \leq n_a \text{ and } j \leq n_a \\ A_{i,\alpha} R_A B_{\beta,j} & \text{if } i \leq n_a \text{ and } j > n_a \\ B_{i,\beta} R_B A_{\alpha,j} & \text{if } i > n_a \text{ and } j \leq n_a \\ B_{i,\beta} R_B A_{\alpha,\alpha} B_{\beta,j} + B_{i,j} & \text{if } i > n_a \text{ and } j > n_a \end{cases} \\ R_A = (I - B_{\beta,\beta} A_{\alpha,\alpha})^{-1} \\ R_B = (I - A_{\alpha,\alpha} B_{\beta,\beta})^{-1} \end{aligned}$$

This defines the scattering matrix of the equivalent network to A and B connected by one port.

o	COO	Cascading networks.	©	
Outling				

- Wave properties.
- 6 Representing a network.
- 6 Cascading networks.

Wave properties.	Representing a network.	Cascading networks.	Ellipsis.	Conclusion. O
Ellipsis.				

Explanations I am skipping here:

- How I compute the direction of propagation of each beam.
- How I build the scattering matrices of the different networks.

Kuddos to Martin Houde for his work on grids \heartsuit .

Houde, Martin, et al. "Polarizing grids, their assemblies, and beams of radiation." Publications of the Astronomical Society of the Pacific 113.783 (2001): 622-638.

Wave properties. o	Representing a network.	Cascading networks.	Ellipsis. O	Conclusion.
Outline				

- Wave properties.
- 6 Representing a network.
- 6 Cascading networks.

o	000	O	•
Conclusion.			

Algorithm.

Given one tree of networks and loads.

For each set of parameter (frequency, diplexer offset, etc.)

- Set the parameters of each network.
- Propagate the direction of propagation.
- Summarize the whole system into one single network.
- Solve the fields on the ports of that loaded network.

2 Make plots.

Implementation.

Python using numpy.

Most of time spent in summarizing the networks.

Code parallelized to use all the CPU cores.

New algorithm available soon.

Faster, more stable, more features.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.

Part III

Parametric study.

Outline.				
Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps. O

Introduction.

Introduction.	The entry grid. 0000000	One diplexer.	Two diplexers.	Next steps. O
Outline				

- 10 The entry grid.
- 1 One diplexer.
 - 12 Two diplexers.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.
●O	0000000		000	O

The setup.

Introduction. O●	The entry grid.	One diplexer.	Two diplexers.	Next steps. O
The setun				

. .

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps. O
Outline				

Introduction.

1 One diplexer.

2 Two diplexers.

Introduction. 00	The entry grid. ●○○○○○○	One diplexer.	Two diplexers.	Next steps. O
The setun				

Introduction. 00	The entry grid. ○●○○○○○	One diplexer.	Two diplexers.	Next steps. O
A very good	grid.			

Our entry grid is tilted to reflect H and transmit V.

Figure: Reflection.

Figure: Transmission.

Matches expectations. LO and sky at 45° , so $\sqrt{2}/2$ is reflected or transmitted.

Introduction.	The entry grid. ○○●○○○○	One diplexer.	Two diplexers.	Next steps. O

A realistic grid.

Wire diameter $10\,\mu m$, period $20\,\mu m$, conductivity $3.5\times 10^7\,S\,m^{-1}$ (aluminum).

The grid leaks.

The rejected polarization is not at 0 anymore, the grid leaks.

Zooming in: slope.

Figure: Reflection.

Figure: Transmission.

Introduction.	The entry grid. ○○○○○●○	One diplexer.	Two diplexers.	Next steps. O
Realistic gri	d.			

Effect of the wire spacing and diameter.

- The leakage is not negligible.
- The grid leaks more in reflection: one diplexer will see more wrong-pol than the other.
- The grid leaks more at higher frequencies, but that effect is probably negligible. We do not have to ignore it though, our model gives it for free.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.
	000000			
Realistic gric	I.			

We should also model

- the dielectric substrate (hard!),
- the metallic residuals on the dielectric substrate (easy).

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps. O
Outline				

Introduction.

The entry grid.

2) Two diplexers.

3 Next steps.

Introduction. 00	The entry grid. 0000000	One diplexer.	Two diplexers.	Next steps. O
The setup				

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.

Photograph of a diplexer unit.

Introduction.	The entry grid.	One diplexer. ●000000000000000000000000000000000000	Two diplexers.	Next steps. O
Ideal case.				

Seen by the horn of the V mixer.

Figure: Sky coupling.

V max at LSB and USB freq.

Perfect tuning.

The theoretical diplexer offset pumps the mixer perfectly.

Introduction.	The entry grid. 0000000	One diplexer. o●oooooooooooo	Two diplexers.	Next steps. O
Ideal case.				

LSB and USB folded on top of each other. There is no mixer model involved, it is a very naive fold that completely ignores the LO.

Figure: Folded sky.

Figure: Sideband ratio.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.
00	0000000	000000000000000000000000000000000000000	000	0

With the realistic entry grid.

Slightly shifted left or right.

Figure: Sky coupling.

With the realistic entry grid.

Figure: Folded sky.

Figure: Sideband ratio.

Imperfect tuning.

The sideband ratio has shifted: .5 not at 6 GHz anymore.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.
00	0000000	0000000000000	000	0

Making the mixer reflective.

Figure: LO coupling.

Figure: Sky coupling.

Where does the SW come from?

How can we have standing waves with only ONE reflective surface?

Blaming the diplexer grid, part 1: making it better.

Thinner and tighter grid.

Figure: LO coupling.

Figure: Sky coupling.

The diplexer grid is responsible.

The grid leaks, allowing the mixer to see itself in the rooftop mirrors.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.
00	0000000	000000000000000000000000000000000000000	000	0

Imperfect rooftop mirrors.

Imperfect junction of the two planes.

Imperfect rooftop mirrors.

Mixer reflects H only. Rooftop mirror rotates only $95\,\%$.

Figure: LO coupling.

Figure: Sky coupling.

Frequency [GHz]

Н

996 998 1000

1004

1006

Our first cross-pol contamination!

SW in H and V despite the mixer reflecting only H.

0.6

0.1

0.0

992 994

Amplitude [1]

Imperfect rooftop mirrors.

Mixer reflects H and V (standard behavior). Rooftop mirror rotates only 95%.

Figure: LO coupling.

Figure: Sky coupling.

Frequency [GHz]

Н

V

1004

SW modulates SW.

Beat due to the different length of the diplexer arms.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.
00	0000000	000000 000 00000	000	0

Imperfect rooftop mirrors.

Figure: Folded sky.

Figure: Sideband ratio.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.
		000000000000000000000000000000000000000		

Turning on the LO reflection.

Figure: LO coupling.

Figure: Sky coupling.

Fast LO-mixer standing wave.

This is why your spectra are ugly.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.
00	000000	000000000000000000000000000000000000000	000	0

Turning on the LO reflection.

Figure: Folded sky.

Figure: Sideband ratio.

Introduction.	The entry grid.	One diplexer. ○○○○○○○○○○●○	Two diplexers.	Next steps. O

Turning on the LO reflection.

Now, looking at the port that would go to the H mixer.

Figure: LO coupling.

Figure: Sky coupling.

Cross talk.

The LO reflects the SW of the V mixer towards the H mixer.

Introduction. 00	The entry grid.	One diplexer.	Two diplexers.	Next steps. O
Outline				

Introduction.

The entry grid.

1 One diplexer.

12 Two diplexers.

3 Next steps.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps. O
The setun				

<u> ч</u> р

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.
			•••	

Effect of tuning on the cross talk.

Well-tuned diplexers.

Figure: V sideband ratio.

Figure: H sideband ratio.

Effect of tuning on the cross talk.

H diplexer well tuned, V diplexer badly tuned.

Figure: V sideband ratio.

Figure: H sideband ratio.

Crosstalk.

Detuning one diplexer changes the SBR on the other.

With a 10 dB attenuator in the LO path.

With attenuator.

The main SW is the mixer-rooftop one due to the leaky grids.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps. ○
Outline				

Introduction.

- The entry grid.
- 1 One diplexer.
 - 12 Two diplexers.

Introduction.	The entry grid.	One diplexer.	Two diplexers.	Next steps.
				•

Next steps.

From qualitative to quantitative.

- Gather lengths, conductivities and other HIFI parameters.
- Build a a mixer-model (Tucker. 3-ports?)
- Grids' substrate.
- Will gaussian beams matter?