KU LEUVEN

PACS Spectrometer Calibration overview

Herschel Calibration Workshop 26-March-2013

Bart Vandenbussche on behalf of Jeroen Bouwman, Alessandra Contursi, Katrina Exter, Helmut Feuchtgruber, Christophe Jean, Johan Oloffson, Albrecht Poglitsch, Elena Puga, Pierre Royer, Roland Vavrek, and the PACS spectrometer team

Overview

- Wavelength calibration
- Ghost characterisation
- Beam characterisation
- Absolute flux calibration
 See Pierre Royer's talk
- RSRF calibration / broadband features
 - Red leak line flux
 - Pointing jitter flux modulation
- Pointing reconstruction
 See Helmut Feuchtgruber's talk

KUI

The PACS spectrometer in a nutshell

- Image slicer : 5x5 9.4" spaxels on the sky
- Reimaged onto a 1d-slit
- Slit image fed to a dispersion grating
- Dispersed spectral orders fed to 1 red and 1 blue detector arrays: 25 x 16
- (25 spatial x 16 instant spectral)
- Rotating the grating: step through the spectrum

The PACS spectrometer in a nutshell

25 x 16 pixel photoconductor array

Relative Spectral response

Order 2 leak

Band R1: >190um: low response, order 2 leak 95-110 um order 2 spectrum added to 190-220 order 1 spectrum

Grating angle - wavelength relation in Littow configuration

From the spectra of 2 blackbodies we can disentangle leak response

 $S_{\lambda,T1} = B_{\lambda,T1}.R1_{\lambda} + B_{\lambda/2,T1}.R2_{\lambda/2}$

 $S_{\lambda,T2} = B_{\lambda,T2}.R1_{\lambda} + B_{\lambda/2,T2}.R2_{\lambda/2}$

 $R1_{\lambda}.B_{\lambda,T1} = S_{\lambda,T1} - B_{\lambda/2,T1}.R2_{\lambda/2}$

$$R2_{\lambda/2} = \frac{S_{\lambda,T2} - B_{\lambda,T2}.R1_{\lambda}}{B_{\lambda/2,T2}}$$

$$R1_{\lambda}.B_{\lambda,T1} = S_{\lambda,T1} - B_{\lambda/2,T1}.\frac{S_{\lambda,T2} - B_{\lambda,T2}.R1_{\lambda}}{B_{\lambda/2,T2}}$$

 $R1_{\lambda}.B_{\lambda,T1}.B_{\lambda/2,T2} = S_{\lambda,T1}.B_{\lambda/2,T2} - B_{\lambda/2,T1}.S_{\lambda,T2} + B_{\lambda/2,T1}.B_{\lambda,T2}.R1_{\lambda}$

From the spectra of 2 blackbodies we can disentangle leak response (ctd)

$$R1_{\lambda} \cdot [B_{\lambda,T1} \cdot B_{\lambda/2,T2} - B_{\lambda/2,T1} \cdot B_{\lambda,T2}] = S_{\lambda,T1} \cdot B_{\lambda/2,T2} - B_{\lambda/2,T1} \cdot S_{\lambda,T2}$$
$$R1_{\lambda} = \frac{S_{\lambda,T1} \cdot B_{\lambda/2,T2} - B_{\lambda/2,T1} \cdot S_{\lambda,T2}}{B_{\lambda,T1} \cdot B_{\lambda/2,T2} - B_{\lambda/2,T1} \cdot B_{\lambda,T2}}$$

$$R2_{\lambda/2}.B_{\lambda/2,T2} = S_{\lambda,T2} - B_{\lambda,T2}.R1_{\lambda}$$

$$R2_{\lambda/2}.B_{\lambda/2,T2} = S_{\lambda,T2} - B_{\lambda,T2}.\frac{S_{\lambda,T1} - B_{\lambda/2,T1}.R2_{\lambda/2}}{B_{\lambda,T1}}$$

 $R2_{\lambda/2}.B_{\lambda/2,T2}.B_{\lambda,T1} = S_{\lambda,T2}.B_{\lambda,T1} - B_{\lambda,T2}.S_{\lambda,T1} + B_{\lambda,T2}.B_{\lambda/2,T1}.R2_{\lambda/2}$

$$R2_{\lambda/2} \cdot [B_{\lambda/2,T2} \cdot B_{\lambda,T1} - B_{\lambda,T2} \cdot B_{\lambda/2,T1}] = S_{\lambda,T2} \cdot B_{\lambda,T1} - B_{\lambda,T2} \cdot S_{\lambda,T1}$$
$$R2_{\lambda/2} = \frac{S_{\lambda,T2} \cdot B_{\lambda,T1} - B_{\lambda,T2} \cdot S_{\lambda,T1}}{B_{\lambda/2,T2} \cdot B_{\lambda,T1} - B_{\lambda,T2} \cdot B_{\lambda/2,T1}}$$

RSRF order 1 + leak order 2 disentangled

RSRF version 4

- Deep ILT RSRF measurement measured on 1 BB temperature only
- Different Blackbody scans only in SED mode
- Keep global shape of low res RSRF LR (leak corrected)
- Keep details of full res ILT RSRF HR
- Wavelet decomposition of RSRFs, 12 levels
- Smoothed RSRF = residual + 5 slowest levels
- RSRF = HR * smooth(LR/HR) (<150 um d(smooth)~0)
- RSRF v4 currently under test should recover line fluxes
 >180um -- see presentation Elena Puga

Beam characterisation

- Neptune Rasters, coarse & fine
 - Coarse rasters: 25x25x2.5"
 - Fine rasters: 4x[5x5x2"]
- Pointing reconstruction Helmut
 - STR subpixel distortion correction
 - Gyro filter
- Mean-averaged signals after masking unstable data
- Normalized fluxes, correction for assymetric chopping

OD 174 - 751 OD 1311/1312

Raster position reconstruction

Combining 4 fine rasters

Combining coarse and fine rasters

Measured fluxes in coarse (red) and fine (blue) Neptune rasters @ 94µm

Plotted without any correction

Coordinates and gain corrected (least-square) by (0.8", 0.7", 1.02)

Equidistantly sampled beams delivered to the users

- Equidistant sampling on the sky 0.5"
- Central part: gaussian model
 - Difference gaussian approximation measurements <80um: 1.5-2%

KU LEUVEN

• Outer part: interpolated values

Fitting / correcting pointing offset from distribution flux over IFU

Refinement of spectrometer beams using ACMS telemetry reconstruction Helmut:

Further refinement: match mean position pixels measured on ground

Spaxel positions B2A from corrected raster

Additional shift (<0.2") throughout raster brings mean position detectors to ground measurements.

KU LEUVEN

15

20

25

Beam before / after pointing correction

Flux losses due to pointing offsets and jitter

Dealing with flux losses due to pointing

- Hipe 10: use sum of central 3x3 for absolute reference
 see talk Pierre
- Bright sources (~100 Jy)
 - Determine pointing jitter from signal distribution in IFU
 - Calculate correction for pointing offsets from beams
- Fainter sources
 - Determine pointing + jitter from ACMS [Helmut method]
 - Calculate correction for pointing offsets from beams

Pointing reconstruction of 7 Neptune SED scans from flux distribution IFU

New corrected beams Telescope normalisation

Residus RSRF / telescope background model after pointing flux loss correction

Preview – PACS solid state spectroscopy of protoplanetary disk

