

Consistency Between PACS Mappers: Point Sources and Extended Emission

Roberta Paladini - NHSC/Caltech

The Map-Making Workshop: Motivation

- ➤ increasing "rumors" about problems with PACS extended emission calibration (→ e.g. Aniano et al. 2012)
- need to investigate the issue, although no reason to think instrumental gain should be different for point sources and extended emission...
- ➤ How extended emission data are processed (→ map-making) is likely to play a role

The Map-Making Workshop: How We Got There...

- First discussion about having a Herschel Map-Making Workshop was in March 2012 at the Herschel Calibration Workshop...
- After a lot of work (!), a joint PACS & SPIRE Map-Making Workshop was held at ESAC on January 28th to 31st 2013, attended by ~60 participants

http://herschel.esac.esa.int/2013Mapmaking.shtml

Philosophy of PACS Benchmarking

<u>Goal of the benchmarking</u> is to test the *performance* of the participating map-making algorithms using both *real* and *simulated* Herschel data sets

MADmap	HIPE/Java implementation
Scanamorphos	http://www2.iap.fr/users/roussel/herschel/
Jscanam	HIPE/Java implementation of Scanamorphos (\rightarrow HIPE 11)
SANEPIC	http://www.ias.u-psud.fr/sanepic/
Unimap	http://infocom.uniroma1.it/~lorenz/Unimap/
Tamasis	http://pchanial.github.com/tamasis-pacs/

ALL THE MAPMAKING PACKAGES ARE PUBLICLY AVAILABLE (OR SOON WILL BE)

About the Map-Making Codes

MADmap	\rightarrow	baseline fittir	baseline fitting + GLS			
Scanamorphos	\rightarrow	destriper	* Only 5 mana			
Jscanam	\rightarrow	destriper	processed out			
SANEPIC*	\rightarrow	GLS	01 36			
Unimap	\rightarrow	destriper + G	destriper + GLS			
Tamasis	\rightarrow	destriper + G	destriper + GLS			

GLS = Generalized Least Square

Real Data Sets: Selection

The selection of the data set is performed to allow the coverage of a parameter space as large as possible in terms of:

- source surface brightness
- background surface brightness
- depth (i.e. # of repetitions)
- ✤ size of covered sky area
- observing mode

Real Data Sets: Selection (cont.)

Field	Source	Background	Size	Coverage	ΑΟΤ
Crab	Bright/ extended	Flat	Medium	Medium	Scan map
HiGAL I=30	Bright/fills the field	Bright	Large	Shallow	Parallel mode
GRB-110422A	Faint/point-like	Flat	Small	Deep	Scan map
IC 348	Bright/ extended (lots of point sources)	Bright/Flat	Small/ Medium	Deep	Scan map
Atlas	Faint point sources	Flat	Large	Shallow	Parallel
NGC 6946	Moderately extended	Flat	Medium	Medium	Scan map
NGC 6334	Bright/fills the field	Bright	Large	Shallow	Parallel mode
M31	extended	Flat-ish	Large	Deep	Parallel mode

Real Data Sets: Selection (cont.)

Field	Source	Background	Size	Coverage	ΑΟΤ
M81	Moderately extended	Flat	Medium	Medium	Scan map
Polar Bear	Cirrus	Flat	Large	Medium/deep	Scan map
LDN1780	Faint/diffuse emission	Flat	Large	Medium	Parallel mode
HOPS Group 38	Bright/fills the field	Bright	Medium	Medium	Scan Map
Rosette	extended/fills the field	Bright	Large	Shallow	Parallel mode
HOPS Group 306	Bright/fills the field	Bright	Small	Medium	Scan map
Sa 187/188 MMS 3-5	Diffuse emission with lots of sources	Moderate	Medium	Shallow	Scan Map
HOPS Group 79	Very Bright point source	Flat-ish	Small	Medium	Scan map
Antennae	Moderately extended	Flat-ish	Medium	Medium	Scan Map

Real Data Sets: Selection (cont.) Example – Crab / red channel

Simulated Data Sets

Simulated *hybrid* data:

A) Simulated sky signal (2D pink-noise)

Flux calibrated Level 1 detector timeline

B) pure instrument noise (staring calibration observation)

Simulated Data Sets (cont.)

PACS Benchmarking: Metrics

- 1. Power spectrum estimation
- 2. Point Source photometry
- 3. Noise statistics
- 4. Difference matrix
- 5. Comparison with ancillary data I/II

PACS Benchmarking – Metrics (cont.): Power Spectrum Estimation (G. Marton)

PACS Benchmarking – Metrics (cont.): Point Source Photometry (Z. Balog, V. Konyves, B. Altieri)

Procedure:

- 1. Find the mass coordinates of the sources visible in a given map;
- 2. Perform gaussian fitting of the source at designated coordinates;
- 3. Do aperture photometry at the position derived by the gaussian fitting using same source and sky apertures for each source;
- 4. Extract the astrometric and photometric information from the result product (flux, fwhm_x, fwhm_y, RA, DEC);
- 5. Compare the RA and DEC values with known 2MASS coordinates

PACS Benchmarking – Metrics (cont.): Noise Statistics (L. Piazzo)

Procedure:

- 1. Select a data set containing close to no signal (e.g. Atlas field);
- 2. flag out sources;
- 3. Obtain a sample of the noise introduced by the mapmaking codes;
- Estimate: NOISE VARIANCE, NOISE 1D-PS, NOISE 2D-PS

PACS Benchmarking – Metrics (cont.): Difference Matrix (V. Konyves)

Procedure:

1. Compare real observations processed with different mapmaking algorithms with respect to a reference (e.g Scanamorphos);

2. Compare simulated observations processed with different mapmaking algorithms with respect to true input sky \rightarrow scatter plot/difference of standard deviation

PACS Benchmarking – Metrics (cont.): Comparison with AncillaryData – IRAS/IRIS (B. Ali)

Procedure:

- 1. We select data (galactic and extra-galactic) for which at least some good fraction of the data is in the linear regime
- 2. We convert PACS units to MJy/sr (IRAS/IRIS units)
- 3. We convolve the PACS data to the IRIS angular resolution:

$$fwhm_{eff} = \sqrt{(fwhm_{IRIS}^2 - fwhm_{PACS}^2)}$$

- 4. We apply color corrections and scaling factors as appropriate
- 5. We generate scatter plots:

$$I_{PACS} = A \times I_{IRIS} + B$$
gain
offset

PACS Benchmarking – Metrics (cont.): Comparison with AncillaryData – MIPS (R. Paladini)

Procedure:

- 1. We select data (galactic and extra-galactic) for which at least some good fraction of the data is in the linear regime
- 2. We convert PACS units to MJy/sr (MIPS units)
- 3. We convolve the PACS data to the MIPS angular resolution:

$$fwhm_{eff} = \sqrt{(fwhm_{MIPS}^2 - fwhm_{PACS}^2)}$$

- 4. We apply color corrections and scaling factors as appropriate
- 5. We generate scatter plots:

$$I_{PACS} = A \times I_{MIPS} + B$$
gain
offset

What The Benchmarking Did Not Include

- test memory consumptions and run time → fair only if individual packages run on the same type of machine
- test specific features which only apply to some map-making packages (e.g. high resolution)

PACS Benchmarking: Preliminary Results

- 1. Power spectrum estimation
- 2. Point Source photometry
- 3. Noise statistics
- 4. Difference matrix
- 5. Comparison with ancillary data II (MIPS)

PACS Benchmarking – Preliminary Results (cont.): Point Source Photometry

- → Simulated Data: injected sources (150) were too faint with respect to simulated background
- \rightarrow Real Data: here we will only talk about this case

PACS Benchmarking – Preliminary Results (cont.): Point Source Photometry

- Aperture Photometry
- HIPE 10 b2743
- Re-centering during phot
- Two source apertures: 12"/20"
- Sky aperture: 25" 35"
- Error estimate: empty apertures around source

(credit: Zoltan Balog)

 ~ 100 sources -0.3 - 50 Jy (Hennemann et al. 2010)

PACS Benchmarking – Preliminary Results (cont.): Point Source Photometry

R = 20"

- 1) Scanamorphos
- 2) Jscanam
- 3) UNIMAP
- 4) Tamasis
- 5) MADMap
- 6) SANEPIC

NOTE: difference between smaller and larger aperture may suggest changes in the shape of the PSF

(credit: Zoltan Balog)

PACS Benchmarking – Preliminary Results (cont.): Comparison with Ancillary Data – MIPS

- Antennae 70, 160 micron (Fazio pid 32)
- Crab 70 micron (Gehrz pid 130)
- IC348
 70 micron (Muzerolle pid 40372/Rieke pid 58
 → programs were combined)
- LDN1780 70, 160 micron (Gordon pid 40154)
 - M31 70, 160 micron (Rieke pid 99)
 - M81 70, 160 micron (Rieke pid 717)
- NGC 6946 70, 160 micron (Kennicutt pid 159)
- Rosette
- 70 micron (Rieke pid 58)

PACS Benchmarking – Preliminary Results (cont.): Comparison with Ancillary Data – MIPS

Color Corrections

- PACS color corrections from: PICC-ME-TN-038 (April 12th 2011 –T. Muller)
- MIPS color corrections from MIPS Data Handbook (/http:// irsa.ipac.caltech.edu/data/SPITZER/docs/mips/mipsinstrumenthandbook/51/)

• <u>Assumptions:</u>

- → Galaxies (Antennae, M31, M81, NGC 6946): @ 20 K
- → Crab: @ 50 K
- \rightarrow LDN 1780: @ 20 K (NOTE: likely too warm, but not an issue..)
- → star formation regions (IC348, Rosette): @ 30 K

COLOR CORRECTIONS – II

PACS ^{cc} ₇₀	PACS ^{cc} ₁₆₀	MIPS ^{cc} 70	MIPS ^{cc} ₁₆₀	scale _{70-71.4}	scale _{160-155.9}	T _D
1.224	0.963	1.052	0.944	1.153	0.959	20 K
1.034	0.976	0.901	0.954	1.078	0.995	30 K
0.982	1.010	0.893	0.971	1.023	1.022	50 K

$$PACS^{cc'}_{\lambda'} = PACS_{\lambda} / PACS^{cc}_{\lambda} * Scale_{\lambda'}$$
$$MIPS^{cc'}_{\lambda'} = MIPS_{\lambda} / MIPS^{cc}_{\lambda}$$

MIPS Non-Linearity (see Alberto's talk)

Flux non-linearity effects are known to affect Ge:Ga detectors

MIPS 70 micron: Ge:Ga 32 X 32 array

MIPS 160 micron: Ge:Ga 2 X 20 array

Documentation:

- Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. II. 70 micron imaging, Gordon, K. D., et al., 2007, PASP, 119, 1019
- Characterization of the MIPS 70 micron non-linearity, MIPS IST TN, Paladini R. & Noriega-Crespo, A., 2009 (<u>http://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/Non_linearity_70um_v2.pdf</u>)

MIPS Non-Linearity (cont.)

PICC-NHSC-TR-034, April 2012 - Paladini, Linz, Altieri, Ali: https://nhscsci.ipac.caltech.edu/pacs/docs/Photometer/PICC-NHSC-TR-034.pdf

For the present analysis, we adopt 100 MJy/sr (~ 1 Jy) and 50 MJy/sr (~2 Jy) as thresholds for MIPS non linearity at 70 and 160 micron, respectively

Notes About Processing:

- No IC348/NGC6946 maps processed by JScanam
- MIPS processing is minimal at both 70 and 160 micron: mosaics are combined with MOPEX starting from archive BCDs
- Since not all PACS mappers provide errors, for consistency fitting was performed setting all weights = 1 (PACS & MIPS)

Example: Crab – 70 micron/linear

Example: M31 – 70 micron/linear

Example: M81 – 70 micron/linear

PACS Benchmarking – Metrics (cont.): Comparison with Ancillary Data – MIPS

70 micron (gains)	JScanam	Scanamorphos	MADMap	Tamasis	Unimap
Antennae	1.13	1.09	1.09	1.09	1.10
Crab	0.89	0.92	0.97	0.94	0.94
IC348		1.16	-1.06	0.88	1.07
LDN1780	-0.61	-0.52	-0.48	-0.47	-0.51
M31	1.13	1.33	1.31	1.34	1.31
M81	1.40	1.35	1.34	1.37	1.38
NGC6946		1.38	1.39	1.39	1.42
Rosette	2.26	0.97	0.88	1.02	0.91

160 micron (gains)	JScanam	Scanamorphos	MADMap	Tamasis	Unimap
Antennae	0.68	0.79	0.78	0.73	0.81
LDN1780	0.77	0.87	-0.07	0.76	0.76
M31	0.92	1.03	0.94	0.89	0.88
M81	1.07	1.13	1.13	1.04	1.11
NGC6946		0.63	0.75	0.71	0.63

These results take MIPS non-linearity into account !

Summary & Future

- When MIPS non-linearity effects for both 70 and 160 micron are taken into account, the average agreement between the PACS and MIPS observations at these wavelengths is of the order of ~15% $(<gain_{70}> = 1.17 + /-0.26), <gain_{160}> = 0.86 + /-0.16)$
- Significant departures from these values (cfr. M81, NGC6946 @70µm) are likely due to convolution effects and residual responsivity variations in the MIPS data (→ further investigation is on-going)
- A preliminary report summarizing these results will be released to the community in ~May 2013. A final report will be released in ~1-year time

PACS Map-Making Team

- Babar Ali (Roberta Paladini)
- Helene Roussel
- Michael Wetzstein
- Pierre Chanial/Pasquale Panuzzo
- Alexandre Beelen
- Lorenzo Piazzo

- \rightarrow MADMap
- \rightarrow Scanamorphos
- \rightarrow Jscanam
- → Tamasis
- \rightarrow SANEPIC
- → Unimap

PACS Benchmarking Team

- Babar Ali
- Bruno Altieri
- Vera Konyves
- Gabor Marton
- Roberta Paladini
- Lorenzo Piazzo
- Roland Vavrek
- Zoltan Balog