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Point Source  
Calibration 



Measured Flux Density for  a Point Source 

•  Detector absorbed power ∝ flux density, weighted by 
aperture efficiency and  SRF, integrated across the band 
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S(ν)  =  source spectrum 

F(ν)  =  instrument SRF 

η(ν)  =  aperture efficiency 



Primary Calibrator for SPIRE: Neptune 
Brightness Temperature Spectrum 

Moreno model 2012  (“ESA-3” or “ESA-4”) 



Neptune Spectrum and SPIRE Bands 



Source Spectrum 
•  Spectrum characterised by value at some frequency  

and a shape function 

•  Examples: 

 Power law with index α : 

 Grey body (T, β) : 



Monochromatic Flux Density at νo 
•  Measured SRF-weighted flux density is converted to 

monochromatic flux density at standard frequencyνo 

•  A source spectrum must be assumed 

•  Power law case 

•  Standard: adopt αo = –1, i.e., ν S(ν) = constant 

•  Pipeline produces 



Colour Correction 
•  Pipeline output  =  monochromatic  

flux density for αs  =  –1   

•  Colour correction  factor KColP  
must be applied 

•  Depends on “actual” source spectrum 
 
E.g., for grey body assumption:  
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Extended Source 
Calibration 



Extended Source 
•  Small region at off-axis angles (θ, φ) 

 
-  Brightness  
 
-  Size 
 
-  Flux density 
 
-  Normalised beam response              

•  Measured flux density for the small region: 

θ 

φ 



Extended Source 
•  Integrate over beam for total measured flux density 

•  Same as point source case except S(ν ) replaced by 
sky intensity integrated over the beam 



•  Spectral shape: e.g. power law, grey body . . .  

•  Spatial shape: e.g., Gaussian, power law, uniform (g = 1) . . .  

•  Beam profile is also circularly symmetric: 

•  Deriving peak surface brightness from measured flux density: 
 
 
 

•  KMonE converts flux density (Jy/beam) to surface 
brightness (Jy/pixel or MJy/sr) 

Some Simplifying Assumptions 
•  Source characterised by spectral and spatial shape functions 

•  Spatial distribution is circularly symmetric  



Case of Uniform Extended Emission: g(θ, θo) = 1 
•  Integral over the beam ≡ frequency-dependent beam solid 

angle: 

•  This depends on how the beam solid angle varies across the 
band 
-  Not measured directly 
-  Must be modeled from band-averaged profile as 
  measured on a point source with a known spectrum 

Jy/beam → surface brightness 



Conversion from Point Source  
Pipeline to Extended Emission Pipeline 

•  KColE converts to peak intensity of an extended source 
with brightness profile g(θ, θo) and spectrum f(ν, ν o)  

•  Extended pipeline surface brightness, which 
assumes a fully extended source with spectral 
index –1 :  

•  Conversion to actual source peak intensity:  



Beam Profile and Aperture 
Efficiency 



Conversion from a Point Source  
Pipeline to Extended Emission Case 

•  Treatment above is very general 
-  Beam properties (aperture efficiency and 

 beam profile) are allowed to vary across  
 the band 

-  Source spectral and spatial distributions 
 can also vary 

 
•  Details depend on detector and optical system 

architecture 
 

•  Two common cases 
-  Absorber-coupling with 0.5λ/D square pixels  
-  Antenna-coupling with 2λ/D circular feedhorns 



Angle (degrees) 

Absorber-Coupled Detectors 

•   Array of square pixels 

•   Pixel size ≡ 0.5λ/D for 
  instantaneous full  

 spatial sampling 

•   Wide pixel field of view  
 ( ~ π  sr) 

•   Cold  stop limits field of 
 view  

•   Near top-hat illumination  
 of  the telescope 

•   Pixel couples to Airy disk 

Cold  
enclosure 

D 

Illumination 
pattern 



2λ/D 

Feedhorn-Coupled Detectors 

•  Single-mode feedhorns  
 

•  Tapered (~ Gaussian) 
  illumination of the telescope 

 
 
•  Maximum aperture efficiency 

 when horn diameter ≡ 2λ/D 
 
•  Throughput is λ2 

 

Illumination 
pattern 



Aperture Efficiency vs. Detector Size 
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SPIRE SRFs and Aperture Efficiencies 



Primary Illumination Edge  
Taper Variation across the Band  

2λ/D  Feedhorn 



Beam Profile for 2λ/D Feedhorn 
with λ /Δλ = 3     

λ/Δλ = 3 

2λ/D  Feedhorn 



Corresponding Beam Solid Angle 

λ/Δλ = 3 

Ω  ∝ ν-1.75 

2λ/D  Feedhorn 



Earlier SPIRE Method of Dealing  
With This Effect: λ2 Weighting of the SRF 

P =  Point source (no weighting)          
E =  Extended source (λ2 weighting) 
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Beam Solid Angle and Aperture 
Efficiency for 0.5λ/D Pixel  

η(νo) = 0.158  



η(νo) = 0.158  

0.5λ/D Absorber-Coupled Pixel: 
Beam Solid Angle and Aperture Efficiency 



Ω(ν) η(ν) = constant 

η(νo) = 0.158  

0.5λ/D Absorber-Coupled Pixel: 
Beam Solid Angle and Aperture Efficiency 



Examples 



Feedhorn Coupling, Square  
Passband with νo at Centre 

λ/Δλ =  
 

10 

5 

3 

Point source  
colour correction 
factor vs. source 

spectral index  



Different Choice of Nominal Frequency 

λ/Δλ = 3 
Centre 

- 3% 

+ 3% 



SPIRE Colour Correction 
(Power-Law SED) 



SPIRE Colour Correction 
(Grey Body SED) 



SPIRE Beams 

Circularised profiles 

•  Broadband beams measured on 
 Neptune (α = 1.3 – 1.5) 

•  Averaged over all detectors 

ΩMeas =  (450, 795, 1665) sq. arcsec. 
               with 4% uncertainty 



SPIRE Beams 
•  Modelled 250-µm beam at νeff and band edges  

Assumption is that measured 
broadband beam = monochromatic  
beam at some frequency νeff  



SPIRE Beams 
•  Effective Beam Solid Angle vs. Source Spectral Index 



SPIRE Beams 
•  Effective Beam Solid Angle vs. Grey Body Temperature 



SPIRE Calibration of Partly Extended 
Emission 

Conversion factor from 
extended source pipeline  
to total flux density for a  
Gaussian source brightness  
profile 



SPIRE Calibration of Partly Extended 
Emission 

Conversion factor from 
extended source pipeline  
to peak surface brightness 
for a  Gaussian source 
brightness profile 



Conclusions 
•  General scheme for calibration of broadband photometric 

measurements of point-like, semi- or fully-extended emission 

•  Can be applied to absorber-coupled or antenna-coupled 
systems 

•  Calibration implementation for SPIRE: see 
-  Talks by George Bendo and Bernhard Schulz 
-  Poster by Chris North 
-  Updated SPIRE Observers’ Manual 

•  New method produces brightness values ~ (7, 7, 12)% lower 
than previous method for a ν3 uniformly extended source 

•  Future work: 
-  Develop practical scheme for dealing with semi-extended 
   emission 
-  Reduce beam solid angle ΩMeas uncertainties using  
  Neptune shadow map to remove zodiacal light and  
  background point sources 


