Herschel Calibration Workshop #5

PACS Photometer Calibration Programme Overview

Markus Nielbock (MPIA Heidelberg) on behalf of the PACS ICC and the Calibration Working Group

PACS Photometer Calibration General Aspects

Central reference documentation:

- PACS Calibration Document (PACS-MA-GS-001) detailed definition and description of all PACS calibration aspects
- PACS Commissioning Phase Plan Document (PACS-ME-PL-024) detailed implementation plan for calibration during commissioning phase
- PACS Performance Verification Phase Plan Document (PACS-MA-PL-001) detailed implementation plan for calibration during PV phase
- PACS Routine Phase Calibration Plan Document (PACS-MA-PL-002) detailed implementation plan for calibration during routine science phase
- http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb instrument calibration details

PACS Photometer Calibration Topics

• In total: 290 h and 1460 AORs (incl. pointing and parallel mode calibration)

PACS Photometer Calibration Flatfield

- Flatfield established for all three bands
- Obtained from scan maps of compact sources along detector rows
- Individual sub-matrices visible
- Variation in time to be investigated

PACS Photometer Calibration Focal plane geometry / Field distortion

- Current FPG calibration based on on-ground measurements
- Small rotation and distortion
- Update based on in-flight measurements expected in forthcoming version
- Will scale FPG by 1% + local variations
- Will have an impact on PSF/EEF and on flux calibration

PACS Photometer Calibration Bandpass / Colour correction

	70 µm	100 µm	160 µm
Stars (T > 3000 K)	1.016	1.033	1.074
Asteroids	1.00	1.02	1.07
Vesta	1.00	1.03	1.07
Planets	0.98	0.99	1.01

- Conversion from in-band flux to monochromatic flux via colour correction factors
- Convention: $v f_{v,s} = \text{const.}$
- Reference wavelength $\lambda_{_0}$ chosen to keep corrections small
- Colour corrections large only for very "cold" SEDs

$$P_{\text{band}}[W] = T A \int_{\lambda_1}^{\lambda_2} \frac{c}{\lambda^2} f_{v,s}(\lambda) S(\lambda) d\lambda$$

reflective losses effective mirror area source SED system response

$$K_{\rm CC} = \frac{\lambda_0}{f_{\nu,s}(\lambda_0)} \frac{\int_{\lambda_1}^{\lambda_2} \frac{C}{\lambda^2} f_{\nu,s}(\lambda) S(\lambda) d\lambda}{\int_{\lambda_1}^{\lambda_2} \frac{1}{\lambda} S(\lambda) d\lambda}$$

PACS Photometer Calibration PSF / Encircled Energy Fraction

- derived from scan map observations
- \bullet PSF core: (nearly) point sources Vesta and α Tau
- PSF wings: unsaturated areas of Mars

WARNING! There is no single general PSF!

A PSF is influenced by:

- fast scan PSF smearing
- reduction methods: highpass filtering, map pixel size, drizzling
- source SED
- straylight and ghost effects
- pointing quality

PACS Photometer Calibration PSF / Encircled Energy Fraction

- Initial EEF measured from Vesta (used in previous calibration versions)
- Sky background was set to zero at r = 60"
- Current EEF is a combination of Vesta and Mars (PSF core saturated)
- Adds ~10% flux at large radii and at all bands

PACS Photometer Flux Calibration Target selection

Important note:

- Zero point calibration not feasible (high telescope background of ~400 Jy/pix @ 70 μm)
- Consistency checks of extended emission with other observatories (talk by R. Paladini)

General guide lines:

• Wide and dense flux coverage (from a few mJy to several hundred Jy)

- Wide temperature range (a few hundred to several thousand K)
- Well established model predictions across the entire spectral range (PACS, SPIRE)
- Good database of reference measurements (ground based, IRAS, ISO, SPITZER)
- No (random) intrinsic variability
- Low background confusion
- Good visibility

PACS Photometer Flux Calibration Target selection

4 classes:

prime standard stars	secondary standard stars	asteroids	planets
• α Boo, α Cet, α Tau,	 less reliable stars for which models exist: α CMa, β Peg, β UMi Additional sources based on archival data ISO GBPP 	 based on models 	Uranus, Neptune
β And, γ Dra • based on models		warm source SEDs	based on models
• hot source SEDs		 time dependent (models) 	 warm source SEDs
highest confidence		 provides fine adjustment of flux grid coverage 	• time dependent (models)
• highest confidence			 non-linear flux regime
	- Gordon MIPS calibration	and planets	 high confidence
	- IRAS	 partly non-linear flux 	
	 converted to PACS bands 	regime	
	 extends flux range to faintest levels 	 confidence varies between high and low 	
	 less confidence 		
see talk by J. Blommaert		see talk by T. Müller	see talks by R. Moreno, G. Orton

PACS Photometer Flux Calibration Programme design

- Flux calibration based on the five prime stellar standards
- Mini scan map mode (medium scan speed, i.e. 20"/s)
- Chopped observations used for verification
- High S/N to optimise photometric accuracy
- Secondary and SSO targets used for verification
- Coordination of SSO observations with other ICCs and Planck to allow for cross calibration
- Stability monitoring on γ Dra (always visible), once per month

PACS Photometer Flux Calibration Analysis procedure

- For the processing details, see talk by Z. Balog
- Non-linearity correction applied
- Sky background subtracted aperture photometry with aperture correction (EEF)

PACS scan map

PACS chop-nodded map

PACS point source with aperture

- Extract interesting observing and HK parameters for investigating possible correlations
- Calculate measured to model flux ratios
- Stellar models as shown by J. Blommaert
- Asteroid models as shown by T. Müller
- Planet models as shown by R. Moreno and G. Orton

PACS Photometer Flux Calibration Result summary

- Details given in Z. Balog's talk
- Current situation already very good
- Calibration uncertainties are dominated by systematic model uncertainty (~ 5%)
- Measurement uncertainty 2% for combination of 5 prime standards in all bands

- High reproducibility of source flux (even without using internal calibration sources)
- Agreement with all (secondary) targets across the entire flux range \rightarrow no NIR filter leak
- Non-linear range only important for PS fluxes beyond 100 Jy \rightarrow okay for asteroids/planets
- \bullet PS fluxes derived from scan maps and chopped observations differ by ~ 8%

PACS Photometer Flux Calibration Future developments

- Internal calibration data used for long trend analysis (see poster by A. Móor)
- Correlations found with evaporator temperature and main mirror flux
- To be converted into correction algorithms
- Model fluxes to be corrected for updated stellar diameters
- Initial results very promising

- Clear distinction between K and M giants $\rightarrow\,$ stellar models
- Measurement uncertainty for combination of five prime calibrators $\sim 1.5\%$
- Repeatability for given object at ~ 0.5%