

Applying the MCM super-resolution method to SPIRE scan maps

David Shupe NHSC/SPIRE ICC January 29, 2013

Maximum Correlation Method (MCM) was

developed for IRAS

Aumann, Fowler & Melnyk 1990

Handles wildly-varying beam profiles, overlapping data, noise estimates.

M31 at 100 microns (J. Fowler)

- The MCM/HiRes algorithm
- Software Implementations
- Inputs and Outputs
- Tips and Caveats

- The MCM/HiRes algorithm
- Software Implementations
- Inputs and Outputs
- Tips and Caveats

The MCM algorithm follows these five steps

- 1. The model: begin with a flat image (default) or an image prior
- 2. Use detector PRFs to observe the model inputs (e.g. predict the inputs)
- 3. For each detector sample *i* contributing to pixel *j*, compute the ratio of measurement to model flux as the correction factor
- 4. Average all the correction factors for pixel *j*
- 5. Multiply model image pixels by average correction factor to make new model

Iterating the MCM method

Figure 2 from Constructing a WISE High Resolution Galaxy Atlas
T. H. Jarrett et al. 2012 The Astronomical Journal 144 68 doi:10.1088/0004-6256/144/2/68

- The MCM/HiRes algorithm
- Software Implementations
 - Python-Hires for maps from SPIRE timelines
 - ICORE for deconvolving SPIRE maps
- Inputs and Outputs
- Tips and Caveats

Hi-Res: IRAS-based implementation

- Works on the timestreams (Level 1)
 - Based on Fortran implementation for IRAS
 - IRAS HiRes is still a supported service
 - Re-implemented in C-based Python (Bob Narron) for other projects (Planck, SPIRE)
 - Fast input of millions of samples for SPIRE
 - 20 iterations take ~4 hr for 1 deg² field
 - Planned to release the code following Caltech procedures
- SPIRE ICC is investigating a HIPE implementation for EDP 10

ICORE: Image Coaddition with Optional Resolution Enhancement

- MCM capability is included in the WISE coadder
 - Chief developer: Frank Masci, IPAC
 - Application to WISE imaging of nearby galaxies in Jarrett et al., 2012, AJ, 144, 68 and Jarrett et al. 2013 AJ, 145, 6
- Operates on images
 - Single image, or overlapping ones to be coadded
 - Can specify a varying PRF but WISE uses a single one
- Released on 12 January
 - Distributed as C source code
 - Multithreading capability (20 minutes for 1 deg² map)
 - http://web.ipac.caltech.edu/staff/fmasci/home/icore.html
 - Manual posted there, and as arXiv:1301.2718

Example of application to WISE data

Figure 1 from Constructing a WISE High Resolution Galaxy Atlas

T. H. Jarrett et al. 2012 The Astronomical Journal 144 68 doi:10.1088/0004-6256/144/2/68

WISE composite compared to Spitzer composite for NGC 1566

- The MCM/HiRes algorithm
- Software Implementations
- Inputs and Outputs
 - Input data and beam profiles
 - Correction-factor-variance diagnostic
 - Flux maps (M33 example)
- Tips and Caveats

Python-HiRes inputs include beam profile image(s), and timelines

- Beam profiles can be specified for each detector, or an average used for all
 - So far run with average beam profile (1 arcsec/pixel)
- Level 1 timelines
 - Signal, RA, Dec, mask for each sample
 - Position angle of each scan
 - Noise estimates (in implementation)

ICORE inputs include the beam profile, and image and uncertainty

- Provision for variable PSFs
 - So far, run with average beam profile (1 arcsec/pixel)
- For SPIRE, a single image is used as the measurement
- Optionally input an uncertainty map
- A simple SPIRE example is included in the distribution

The correction-factor-variance image shows areas of convergence

Perfect convergence would be a variance of zero (black).

Large values indicate data that do not agree, e.g. outliers, noise, saturation etc.

Outlier correction factors at a high iteration can be used to mask data.

The CFV image can be thresholded to serve as a mask for photometry.

M33 PLW naivemap

M33 PLW Hi-Res: 5 iterations

M33 PLW Hi-Res: 20 iterations

M33 PLW Hi-Res: 40 iterations

M33 PLW ICORE processing (F. Masci)

- The MCM/HiRes algorithm
- Software Implementations
- Inputs and Outputs
- Tips and Caveats
 - Artifact and baseline removal
 - Handling negative fluxes
 - Ringing suppression

The input data must be free of artifacts and have baselines normalized

- MCM assumes all the measurements are valid
 - (however note that outliers in the correction factors can be excluded)

 For the Level 1 HiRes we use pipelinedeglitched timelines and the destriper

The background should be removed but data values cannot be negative

- A constant background allows point sources to ring
- Negative values are masked to a small value 1.e-15

Ringing suppression and recovery of noise properties is included in ICORE

- 1. Subtract background
- 2. Set negative fluxes to zero and add a small value (1.e-20) to all data
- 3. Run MCM until convergence
- 4. Add the background
- 5. Run MCM for a few iterations to debias the noise

Summary

- MCM method can be applied to SPIRE data
 - Similar results for timelines and images as the input (metrics presentation later)
 - ICORE deconvolution is publicly available now, timelines versions on the path to release
- Some open issues and missing features for the Python-Hires (Level 1) version
 - Measurement errors in the weighting and uncertainty output
 - Variations in beam profiles
 - Convergence criteria

Acknowledgments

- Frank Masci, Bob Narron, John Fowler (IPAC)
- Tom Jarrett (University of Cape Town)
- SPIRE ICC