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Maximum Likelihood Mapmaking in a nutshell

A general data model

@ Let the sky be a vector s,

@ Let observe it in a certain way As,
@ Add some noise nand ...

@ Thedatadisd=As+n.



Maximum Likelihood Mapmaking in a nutshell

A general data model

@ Let the sky be a vector s,

@ Let observe it in a certain way As,
@ Add some noise nand ...

@ Thedatadisd=As+n.

A Maximum Likelihood approach

@ The noise nis a Gaussian, i.e.
@ the probability distribution wrt. the values is Gaussian...
@ but can have any power spectrum and/or correlation...
e N=(nn")

@ The log-likelihood of the data is
e logL(d|s)=—%(d—As)N~"(d—As)

@ Maximizing the log-likelihood wrt s leads to
° 5= (AIN-1A) T AIN-'d



Example 2 sky pixels, 4 data points

d, = [A11|A1|| S1 + Ny
d; Az1|Az2|( Sz n;
ds Asz1|Asz; N3
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Example 2 sky pixels, 4 data points
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Example 2 sky pixels, 4 data points

d; = |10 ﬁ# + n,
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Example 2 sky pixels, 4 data points

d; = |10 ﬁ# + n,
d, 01 b:‘ n,
ds 011 N3
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Example 2 sky pixels, 4 data points

dl = 1(0 ﬁ# + Ny
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In practice...

Large numbers

o Dgamples = Zobs. Ndet X fsamp x T
@ nyy > 1000

Pointing Matrix — A

@ large ngy X Ngamples
@ sparse (only O or 1)
@ (A'N-"A) has no obvious symmetry

Noise Covariance Matrix — N

@ very large Ngamples X Dsamples
@ could be dense ...
@ ... can not easily be inverted ...



nal nd oise stimation

@ First developed for BLAST experiment data.
( Patanchon, G. et al 2008, Apd, 681, 708)
@ Extended for the general case at IAS, Orsay

@ LABOCA, SPIRE, PACS, NIKA
@ http://www.ias.u-psud.fr/sanepic

ignal nd!oise " stimation neluding C orrelations

umentation  Download Install  Tutorial FAQ  About

A Versatile Program for Bolometer Array Data Reduction

Signal And Noise Estimation Procedure Including Correlation (SANEPIC) has been originaly developped by G. Patanchon to be used an
data from the Ballonborne Large Aperture Submilimeter Telescope experiment (BLAST). SANEPIC has then been fully revised,
modularized and generalzed to other bolometer array by A Beelen & M. Husson. SANEPIC has been applied with success to
Herschel/SPIRE, Herschel/PACS data

SANEPIC is based on a maximum likelinood approach, vith several approximatians, and focuses speciically on the regime
where there are a large number of detectars sampling the same map of the sky, and allowing the possibilty for strong
correlation between detectors time streams.

Model of the data

frequency The data for detector i observing at a given wavelength and at a time sample t can be wrtten as
sampling and high

pass fiter frequency it} = (AT}t 3t
where p labels the pixel n the final map, A_i s the pointing matrix for bolometer i, <_p is the amplitude at pixel p. and is the
noise amplitude at time t for bolometer i. Assuming a symetric beam, SANEPIC use a maximum likelihood technique to derive
the sky map < p convalved by the instrument beam, The noise term . {i} represent the sum of al the contributions to the
timestream which do not reproject on the sky and can be decomposed as.

n_{it} = tilde{n}_{it} + \alpha_i

where the first termis the noise which is uncorrelated between detectors and the second term represents the common-mode
component of the noise, rescaled by an amplitude parameter i which depends on the detector but not on time. The noise is

el s assumed to be Gaussian and stationary

Maximum Likelihood map-making

Bug Fix fo
SANEPIC Assuming the simple linear modal above, the maximum likelihaad solution is estimated by the so called map making equation


http://www.ias.u-psud.fr/sanepic

The SANEPIC approach

The magic of Fourier Transform

@ |F the data segment is circulant,
@ and there is no gap in the data
@ then Ny = C(|t — t'|) and N = FTAF where

@ F is the Fourier transform (} transpose conjugate)
@ A is a diagonal matrix
@ A, . = P(w) the power spectrum of the data segment

@ and... N-' = FIA=1F, is also a circulant matrix




The SANEPIC approach

The magic of Fourier Transform

@ |F the data segment is circulant,

@ and there is no gap in the data
@ then Ny = C(|t — t'|) and N = FTAF where

@ F is the Fourier transform (} transpose conjugate)
@ A is a diagonal matrix
@ A, . = P(w) the power spectrum of the data segment

@ and... N-' = FIA=1F, is also a circulant matrix

Is the data circulant ?

@ In general no, but...
@ can be made circulant by

@ polynomial baseline, linear fit on the edges
and/or apodization
@ high pass pre-filtering (f.y)



Inverse Noise Covariance Matrix

(from Patanchon et al. 2008)
det. 1 det. 2 det. 3

@ 10 min. of BLAST data
(60,000 samples)

@ each submatrix is described by
Pj(w)

det. 1

det. 2

det. 3




Inverse Noise Covariance Matrix

(from Patanchon et al. 2008)

det. 1 det. 2 det. 3
@ 10 min. of BLAST data
(60,000 samples) e 1
@ each submatrix is described by
P(w) ™"
° [N_1]ij2‘t’ =0 for det. 2

[t —t'| > min(Acu,ns/2)

det. 3




Inverse Noise Covariance Matrix

@ 10 min. of BLAST data
(60,000 samples)
@ each submatrix is described by
Pi(w)”
—1 —
° [N ]ijtt’ =0 for
[t —t'| > min(Acu,ng/2)
@ auto AND cross spectra
(cf. MADCAP)

(from Patanchon et al. 2008)
det. 1 det. 2 det. 3
A — — | — e — e

det. 1

det. 2

det. 3



Inverse Noise Covariance Matrix

obs. 1 obs. 2

det. 1 det. 2 det. 3




Noise Power Spectra

Definition — Binned Power spectrum

1 Wmax(q) v~
Pj(q) = o > diw
Wmin(q)
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Noise Power Spectra

Definition — Binned Power spectrum

1 Wmax (q) .

Pij(C]) = Z d?wajw

n
“ Wimin(q)

In practice

@ P is assumed to be perfectly known for each data set ...
@ d; should be pure noise

@ lterative approach on blank field
@ Estimate Py(w) using blank field
@ Compute § using Py(w)
© Estimate P(w) from d — As
© Re-compute § using P(w) and iterate 3-4 until convergence



Noise Power Spectra

Definition — Binned Power spectrum

Wmax(q) v~
Pj(q) = o > diw
Wmin(q)

In practice

@ P is assumed to be perfectly known for each data set ...
@ d; should be pure noise

@ lterative approach on blank field

@ Bootstrap P(w) for other fields ...
... and iterate again



Noise Power Spectra

Definition — Binned Power spectrum

1 Wmax(q) .
Pj(q) = o > diw
Wmin(q)

In practice

@ P is assumed to be perfectly known for each data set ...
@ d; should be pure noise

@ lterative approach on blank field
@ Bootstrap P(w) for other fields ...
@ nj =N+ ,ikCk
@ blind component separation
o Py = (M) + g cin® (€l Pj = 3 k ik k (CiCr)



Noise Power Spectra

Definition — Binned Power spectrum

1 WmaX(Q)~* .
Pi/‘(q):n_q > diwdjw
Wimin(q)

(Patanchon et al. 2008)
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Gaps in the data

@ calibration block, turnaround, missing data...
@ processing flags (glitches ...)

Map aking

@ data stream needs @ all data needs to be mapped
to be continuous (pointing matrix)
@ linear interpolation @ two strategies:

@ one extra pixel
e extra map for flagged data



Hidden Hypothesis

Pixels describe a constant sky problem for strong sources
@ variables objects — artifacts
@ unflagged glitches — artifacts
@ strong gradient within a pixel — artifacts

@ pointing errors within a pixel — artifacts
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@ ... all very large scales might be lost
@ ... usually not measurable — P(k)

@ ... can be controlled by f.



Hidden Hypothesis

Pixels describe a constant sky problem for strong sources

@ variables objects — artifacts
@ unflagged glitches — artifacts
@ strong gradient within a pixel — artifacts
@ pointing errors within a pixel — artifacts

Data segments are circulant

@ depends on the scanning strategy ...
@ ... all very large scales might be lost
@ ... usually not measurable — P(k)

@ ... can be controlled by f.

Redundancy is the key

@ different scanning angle



SANEPIC Requirements & Other Features

Parallel by essence P/S ~ 0.94 — MPI

@ by observing block and/or receivers

@ |0 intensive so use local disk
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SANEPIC Requirements & Other Features

Parallel by essence P/S ~ 0.94 — MPI
@ by observing block and/or receivers

@ |0 intensive so use local disk

Memory friendly

@ keep only the filled pixels in memory
@ x9 per processes

Projection WCSLIB

@ any known projection ...
@ or any valid fits header
@ can convert to/from galactic from/to equatorial



SANEPIC Requirements & Other Features

SANEPIC input

@ fits_filelist : list of file to process
@ noise_dir : corresponding noise powerspectra

@ pixsize... or mask_file : to control the projection



SANEPIC Requirements & Other Features

SANEPIC input

@ fits_filelist : list of file to process
@ noise_dir : corresponding noise powerspectra
@ pixsize... or mask_file : to control the projection

SANEPIC pre-processing

@ fy, : for high-pass filtering of the timeline

@ f,, : for cutting the noise powerspectra

@ poly_order : polynomial baseline subtraction

@ linear_baseline : simple linear baseline on edge



Application to HERSCHEL/SPIRE

Going out of HIPE

@ best flags available

@ all data must be calibrated in flux

@ positions must be corrected of any offsets

@ no temperatureDriftCorrection task in the pipeline

@ Use export_SpireToSanepic.py (P. Panuzzo)
@ export all three bands into one fits file



Application to HERSCHEL/SPIRE

Going out of HIPE

@ best flags available

@ all data must be calibrated in flux

@ positions must be corrected of any offsets

@ no temperatureDriftCorrection task in the pipeline

@ Use export_SpireToSanepic.py (P. Panuzzo)
@ export all three bands into one fits file

Have a look a the data



SPIRE data timeline

E case3 [nomina ‘ ‘ ) ‘ ‘ u “M E

cE BRI e
S wwmmm E

o MLk E

g e -

iy nmmmmwmmw”” ;
0.0f Wl‘ é
14 S — -;;

§ 8 ? - -~ é
s °F 7 E
S E / :g
0" :

1.5 o

C gg:zéwz[pzooroc‘]‘recgec/s ”MM WWWMWW ]

1.0 fampy = 10 Hz - E

- A ]

C MWM :

C w M E

0.0 MWM‘W | E

0 ) . : !

time [h]



SPIRE data timeline
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SPIRE power spectra
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SPIRE rule of thumb

Have a look at your data

@ Non-stationarity within an observation
@ on what scale ? where does it affect the data ?
o filters-it (f.y),
@ or cut the data in chunks,
@ or down-weight the entire dataset
@ Unflagged glitches

@ second level deglitching
@ recompute the noise power spectra (?)




SPIRE rule of thumb

Have a look at your data

@ Non-stationarity within an observation
@ on what scale ? where does it affect the data ?
o filters-it (f.u),
@ or cut the data in chunks,
@ or down-weight the entire dataset
@ Unflagged glitches

@ second level deglitching
@ recompute the noise power spectra (?)

Mapping Transfer function Pout(k)/Pin(k)

@ Monte-Carlo simulation
@ Mandatory as filtering depends on the observing strategy
@ Compares very well with PLANCK maps on large scale



Application to HERSCHEL/PACS

Going out of HIPE

@ best flags available
@ all data must be calibrated in flux

@ positions must be corrected of any offsets / errors

@ No highpassFilter /photGlobalDriftCorrection
/ ... task in the pipeline

@ Use export_PacsToSanepic.py (M. Sauvage)
@ make sure that you ran a second level deglitcher



Application to HERSCHEL/PACS

Going out of HIPE

@ best flags available
@ all data must be calibrated in flux

@ positions must be corrected of any offsets / errors

@ No highpassFilter /photGlobalDriftCorrection
/ ... task in the pipeline

@ Use export_PacsToSanepic.py (M. Sauvage)
@ make sure that you ran a second level deglitcher

Have a look a the data




PACS data timeline
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PACS data timeline




PACS power spectra
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PACS rule of thumb

Have a look at your data

@ Noise is often stationary, but check
@ Unflagged calibration block

@ can affect whole map power distribution (FFT)
@ Unflagged glichtes

@ second level deglitching (after SANEPIC)
@ recompute the noise power spectra (?)
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Blue/Green data

@ nchan prevent full power spectra estimation
@ can be split into sub-arrays ...
@ ... and then recombined before full inversion with SANEPIC



PACS rule of thumb

Have a look at your data

@ Noise is often stationary, but check
@ Unflagged calibration block

@ can affect whole map power distribution (FFT)
@ Unflagged glichtes

@ second level deglitching (after SANEPIC)
@ recompute the noise power spectra (?)

Blue/Green data

@ nchan prevent full power spectra estimation
@ can be split into sub-arrays ...
@ ... and then recombined before full inversion with SANEPIC

Mapping Transfer function Pout(k)/Pin(k)

@ Monte-Carlo simulation
@ Mandatory as filtering depends on the observing strategy



Programs structure

Data Noise-Noise
fits files i i |Power
i | |Spectra

sanepic.ini
&
input files

:“ Naive Maps )



optimMap_sanePic.fits has 7 extensions
Primary header: 21 records

No data
Extension 1 -- Image
Header 40 records
IMAGE ( 1750 2104 )
Extension 2 -- Error
Header : 40 records
IMAGE ( 1750 2104 )
Extension 3 -- Coverage
Header 40 records
IMAGE ( 1750 2104 )
Extension 4 -- Findchart
Header 40 records
IMAGE ( 1750 2104 )
Extension 5 -- mask
Header 22 records
IMAGE ( 1750 2104 )
Extension 6 -- IniFile
Header 21 records
Binary Table ( 193 55
Extension 7 -- InputFiles
Header 33 records

Binary Table ( 189 2
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