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Maximum Likelihood Mapmaking in a nutshell

A general data model

Let the sky be a vector s ,

Let observe it in a certain way A s,

Add some noise n and ...

The data d is d = A s + n.

A Maximum Likelihood approach

The noise n is a Gaussian, i.e.

the probability distribution wrt. the values is Gaussian...

but can have any power spectrum and/or correlation...

N =
〈

n nt
〉

The log-likelihood of the data is

logL(d |s) = − 1
2
(d − A s)N−1 (d − A s)

Maximizing the log-likelihood wrt s leads to

ŝ =
(

AtN−1A
)

−1
AtN−1d
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In practice...

Large numbers

nsamples =
∑

obs. ndet × fsamp × T

nsky ≫ 1000

Pointing Matrix − A

large nsky × nsamples

sparse (only 0 or 1)
(

AtN−1A
)

has no obvious symmetry

Noise Covariance Matrix − N

very large nsamples × nsamples

could be dense ...

... can not easily be inverted ...



Signal And Noise Estimation Procedure Including Correlation

First developed for BLAST experiment data.

( Patanchon, G. et al 2008, ApJ, 681, 708)

Extended for the general case at IAS, Orsay

LABOCA, SPIRE, PACS, NIKA

http://www.ias.u-psud.fr/sanepic

http://www.ias.u-psud.fr/sanepic


The SANEPIC approach

The magic of Fourier Transform

IF the data segment is circulant,

and there is no gap in the data

then Ntt ′ = C (|t − t ′|) and N = F †ΛF where

F is the Fourier transform († transpose conjugate)

Λ is a diagonal matrix

Λω,ω = P(ω) the power spectrum of the data segment

and... N−1 = F †Λ−1F , is also a circulant matrix

Is the data circulant ?

In general no, but...

can be made circulant by

polynomial baseline, linear fit on the edges

and/or apodization

high pass pre-filtering (fcut)
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Inverse Noise Covariance Matrix

10 min. of BLAST data

(60,000 samples)

each submatrix is described by

Pij(ω)
−1

[

N−1
]

ijtt ′
= 0 for

|t − t ′| > min(λcut, ns/2)

auto AND cross spectra

(cf. MADCAP)

(from Patanchon et al. 2008)
det. 2

det. 1

det. 1 det. 3

det. 2

det. 3
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Inverse Noise Covariance Matrix
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Noise Power Spectra

Definition – Binned Power spectrum

Pij(q) =
1

nq

wmax (q)
∑

wmin(q)

d̃
∗

iw d̃ jw
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In practice

Pij is assumed to be perfectly known for each data set ...

di should be pure noise

Iterative approach on blank field

Bootstrap P(w) for other fields ...

ni = ñi +
∑

k αi,kck
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In practice

Pij is assumed to be perfectly known for each data set ...

di should be pure noise

Iterative approach on blank field
1 Estimate P0(w) using blank field
2 Compute ŝ using P0(w)
3 Estimate P(w) from d − Aŝ
4 Re-compute ŝ using P(w) and iterate 3-4 until convergence

Bootstrap P(w) for other fields ...
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Noise Power Spectra

Definition – Binned Power spectrum

Pij(q) =
1

nq

wmax (q)
∑

wmin(q)

d̃
∗

iw d̃ jw

In practice

Pij is assumed to be perfectly known for each data set ...

di should be pure noise

Iterative approach on blank field

Bootstrap P(w) for other fields ...

... and iterate again

ni = ñi +
∑

k αi,kck



Noise Power Spectra

Definition – Binned Power spectrum

Pij(q) =
1

nq

wmax (q)
∑

wmin(q)

d̃
∗

iw d̃ jw

In practice

Pij is assumed to be perfectly known for each data set ...

di should be pure noise

Iterative approach on blank field

Bootstrap P(w) for other fields ...

ni = ñi +
∑

k αi,kck

blind component separation

Pii = 〈ñ∗

i ñi〉+
∑
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2 〈c̃∗
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Noise Power Spectra

Definition – Binned Power spectrum

Pij(q) =
1

nq

wmax (q)
∑

wmin(q)

d̃
∗

iw d̃ jw

BLAST data

3h

ELAIS-N1

250µm

(Patanchon et al. 2008)



Gaps in the data

Gaps ?

calibration block, turnaround, missing data...

processing flags (glitches ...)

Power Spectra

data stream needs

to be continuous

linear interpolation

Map Making

all data needs to be mapped

(pointing matrix)

two strategies:

one extra pixel

extra map for flagged data



Hidden Hypothesis

Pixels describe a constant sky problem for strong sources

variables objects → artifacts

unflagged glitches → artifacts

strong gradient within a pixel → artifacts

pointing errors within a pixel → artifacts

Data segments are circulant

depends on the scanning strategy ...

... all very large scales might be lost

... usually not measurable – P(k)

... can be controlled by fcut

Redundancy is the key

different scanning angle
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SANEPIC Requirements & Other Features

Parallel by essence P/S ≈ 0.94 − MPI

by observing block and/or receivers

IO intensive so use local disk
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SANEPIC Requirements & Other Features

Parallel by essence P/S ≈ 0.94 − MPI

by observing block and/or receivers

IO intensive so use local disk

Memory friendly

keep only the filled pixels in memory

×9 per processes

Projection WCSLIB

any known projection ...

or any valid fits header

can convert to/from galactic from/to equatorial



SANEPIC Requirements & Other Features

SANEPIC input

fits_filelist : list of file to process

noise_dir : corresponding noise powerspectra

pixsize... or mask_file : to control the projection



SANEPIC Requirements & Other Features

SANEPIC input

fits_filelist : list of file to process

noise_dir : corresponding noise powerspectra

pixsize... or mask_file : to control the projection

SANEPIC pre-processing

fhp : for high-pass filtering of the timeline

fcut : for cutting the noise powerspectra

poly_order : polynomial baseline subtraction

linear_baseline : simple linear baseline on edge



Application to HERSCHEL/SPIRE

Going out of HIPE

best flags available

all data must be calibrated in flux

positions must be corrected of any offsets

no temperatureDriftCorrection task in the pipeline

use export_SpireToSanepic.py (P. Panuzzo)

export all three bands into one fits file

Have a look a the data
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SPIRE data timeline



SPIRE data timeline



SPIRE power spectra



SPIRE rule of thumb

Have a look at your data

Non-stationarity within an observation

on what scale ? where does it affect the data ?

filters-it (fcut),

or cut the data in chunks,

or down-weight the entire dataset

Unflagged glitches

second level deglitching

recompute the noise power spectra (?)

Mapping Transfer function Pout(k)/Pin(k)

Monte-Carlo simulation

Mandatory as filtering depends on the observing strategy

Compares very well with PLANCK maps on large scale
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Application to HERSCHEL/PACS

Going out of HIPE

best flags available

all data must be calibrated in flux

positions must be corrected of any offsets / errors

no highpassFilter / photGlobalDriftCorrection

/ ... task in the pipeline

use export_PacsToSanepic.py (M. Sauvage)

make sure that you ran a second level deglitcher

Have a look a the data
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PACS data timeline



PACS data timeline



PACS power spectra



PACS rule of thumb

Have a look at your data

Noise is often stationary, but check

Unflagged calibration block

can affect whole map power distribution (FFT)

Unflagged glichtes

second level deglitching (after SANEPIC)

recompute the noise power spectra (?)

Blue/Green data

nchan prevent full power spectra estimation

can be split into sub-arrays ...

... and then recombined before full inversion with SANEPIC

Mapping Transfer function Pout(k)/Pin(k)

Monte-Carlo simulation

Mandatory as filtering depends on the observing strategy
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Programs structure



Output Map
optimMap_sanePic.fits has 7 extensions

Primary header: 21 records

No data

Extension 1 -- Image

Header : 40 records

IMAGE ( 1750 2104 )

Extension 2 -- Error

Header : 40 records

IMAGE ( 1750 2104 )

Extension 3 -- Coverage

Header : 40 records

IMAGE ( 1750 2104 )

Extension 4 -- Findchart

Header : 40 records

IMAGE ( 1750 2104 )

Extension 5 -- mask

Header : 22 records

IMAGE ( 1750 2104 )

Extension 6 -- IniFile

Header : 21 records

Binary Table ( 193 55 )

Extension 7 -- InputFiles

Header : 33 records

Binary Table ( 189 2 )
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