ROMAGAL: the Hi-GAL data reduction pipeline

A. Traficante and the Hi-GAL map-making team

MANCHESTER

Outline

- Hi-GAL survey
- Hi-GAL pipeline: pre-processing steps
- Hi-GAL pipeline: ROMAGAL algorithm
- ROMAGAL PGLS
- Map calibration (Zero-level offset)
- Conclusions

Hi-GAL Herschel Infrared Galactic Plane Survey (Molinari et al. 2010) The largest Herschel open-time key project Wavelength Coverage 70-500 μm $2^{\circ} \times 360^{\circ}$ Sky coverage $|\mathbf{b}| \leq 1^{\circ}$ (following the Galactic warp) **Total Herschel time** ~ 900 hours Parallel (PACS and SPIRE observe Scanning strategy simultaneously)

Scan speed

60"/sec

Alessio Traficante

Hi-GAL <u>Herschel Infrared Galactic Plane Survey</u>

(Molinari et al. 2010)

Alessio Traficante

102

Hi-GAL <u>Herschel Infrared Galactic Plane Survey</u>

(Molinari et al. 2010)

Tiles cover the Galactic Plane with different orientations

PACS 70 μ m l=30 coverage

Hi-GAL <u>Herschel Infrared Galactic Plane Survey</u>

(Molinari et al. 2010)

Each tile:

• 2° x 2°

PIXELS

- ~ 54 scan-legs (nomimal+orthogonal)
- ~ 10-30 samples per pixel (depending from the map resolution)

~ 3000 x 3000 (PACS 70 μ m)

~ 500 x 500 (SPIRE 500 μ m)

PACS 70 μ m l=30 coverage

Hi-GAL <u>Herschel Infrared Galactic Plane Survey</u>

(Molinari et al. 2010)

More than 160 $2^{\circ} \ge 2^{\circ}$ tiles

PACS band (µm)	On- board freq.	Data freq. (Hz)	Data per tile	SPIRE band (µm)	Data freq. (Hz)	Data per tile
	(Hz)			250	10	~0.8 Gb
70	40	5	~8 Gb	350	10	<0.5 Gb
160	20	5	~4 Gb	500	10	< 0.5 Gb

MapMaking

ROMAGAL tailored and developed for Hi-GAL "1" 63 tiles $|b| < 1^{\circ} -71^{\circ} < 1 < 66^{\circ}$

	RAW data	Dimensions	~ Gb
SIAKI		Contents	Signal+noise (systematics, glitches, statistical fluctuations,)
EINICU		Dimensions	$\sim Mb$
LINI <u>JU</u>	Map	Contents	Signal + residuals, ideally noiseless

How to reduce data without loosing information? Map Making MANCHESTER Alessio Traficante Herschel map-making workshop 28-31/01/13

MapMaking

For each Herschel bolometer, we can model the time ordered data (TOD) **d**:

n depends from -

Technical specification of the instruments

Specifics of each survey (acquisition strategy, ...)

Alessio Traficante

MANCHEST

From Level 0 to Level 1: HIPE

- Conversion from ADU to physical unit
 PACS Jy/px SPIRE Jy/beam
- Pixel-to-pixel offset

MANCHEST

TOD creation for each PACS/SPIRE bolometer

Alessio Traficante

PACS 70 μ m TOD

For each sub-array

- TOD median value of each scan-leg
- Minimum median as representative of the drift
- Polynomial fit

MANCHESTER

Alessio Traficante

Alessio Traficante

Minimum of the median residual after polynomial fit subtraction

Alessio Traficante

MANCHESTER

Glitches

Glitches which alter the detector responsivity

Spikes

Affect only a specific map pixel

MANCHESTER

Herschel map-making workshop 28-31/01/13

Alessio Traficante

Glitches

Glitches which alter the detector responsivity

MANCHESTER

TOD affected by powerful glitch event:

 TOD first derivative to identify the "jump"

exponential behavior

Flagged points

Alessio Traficante

Spikes

SPIRE

Standard MMT + IDL algorithm

IDL algorithm

PACS

IDL algorithm: sigma clipping on spatial redundancy

 $n \text{ sigma} = -0.569 + \sqrt{-0.072 + 4.99 \log(N)}$

Derived by S. Pezzuto

N hits per pixel

MANCHESTER

~ 5-10% of data **flagged** as glitches

Herschel map-making workshop 28-31/01/13

Alessio Traficante

PACS 70 μ m naïve from raw-data

MANCHESTER

PACS 70 μ m naïve after pre-processing

Survived: white noise 1/f noise

ROMAGAL algorithm

But first: how to manage flagged data?

Alessio Traficante

ROMAGAL pipeline

Main ROMAGAL assumption

- The noise n is Gaussian distributed and with a null average
- 2. The noise **n** is piecewise stationary
- 3. The pure signal does not change with time over the sky

Alessio Traficante

ROMAGAL pipeline

Simulations of 1/f noise with 10% of flagged data

Null value (Breaks hyp. 1-2-3)

MANCHESTER

Statistical noise properties preserved (NR) (Breaks hyp. 3)

Alessio Traficante

Alessio Traficante

ROMAGAL MapMaking

- The noise **n** is piecewise stationary
- The noise **n** is Gaussian distributed and with a null average
- The pure signal does not change with time over the sky

We can estimate the best map, solving the system d = Pm + nvia **GLS** (Generalized Least Square) solution

$$\tilde{\mathbf{m}} = (P^T \mathbf{N}^{-1} P)^{-1} P^T \mathbf{N}^{-1} \mathbf{d}$$

 $N = \langle nn^T \rangle$ Noise Correlation matrix (NON-diagonal) \tilde{m} is unbiased optimal minimum variance estimator Maximum Likelihood estimator

Alessio Traficante

Herschel map-making workshop 28-31/01/13

 $\langle \mathbf{n} \rangle = 0$

ROMAGAL implementation

GLS solution $\tilde{\mathbf{m}} = (P^T N^{-1} P^T N^{-1} \mathbf{d})$

This matrix is $n \sim 10^7$ =

Inversion scales as n^3

n = 10²¹ operations requires ~ 100 days...

...on TITAN!!!

N° 1 supercomputer to date ~ 500.000 processors ~50 petaflops (10¹⁵ oper./s) peak performance

ROMAGAL implementation

noise properties of each specific detector **1** noise filter per bolometer

 $f_k = knee frequency$ white noise dominate the 1/f noise

Herschel map-making workshop 28-31/01/13

Alessio Traficante

MANCHEST

ROMAGAL implementation

Real implementation $(\mathrm{P}^T\mathrm{N}^{-1}\mathrm{P}) ilde{\mathbf{m}} = \mathrm{P}^T\mathrm{N}^{-1}\mathbf{d}$

- Parallel FORTRAN 90/95 code based on MPI libraries
- FFT routines
- Iterative methods (Coniugate Gradient CG) that converges in few iterations to solve the system

PACS 70 μ m map of a 2 ° × 2 ° Hi-GAL field: ~ 20 mins on 8 x 2.5 GHz cores

Alessio Traficante

Hi-GAL (l,b)=(59°,0°) PACS 70 μ m

Alessio Traficante

MANCHESTER

Hi-GAL 1=030 naïve

Herschel map-making workshop 28-31/01/13

Alessio Traficante

MANCHESTER 1824

Hi-GAL 1=030 GLS

Herschel map-making workshop 28-31/01/13

Alessio Traficante

MANCHESTER 1824

Pre-processing is DEMANDING

WITH pre-processing

WITHOUT pre-processing

Galactic longitude

Herschel map-making workshop 28-31/01/13

Galactic longitude

Alessio Traficante

MANCH

Band	rms igls (Jy/pixel)	rms naive([Jy/pixel)	ratio
70µm	0.0085	0.026	~ 3.1
160µm	0.047	0.102	~ 2.2

PACS $I = 30^{\circ}$ field

PACS $I = 59^{\circ}$ field

Band	rms igls (Jy/pixel)	rms naive(Jy/pixel)	ratio
70µm	0.004545	0.02208	~ 4,9
160µm	0.01899	0.03586	~ 1,9

SPIRE $I = 30^{\circ}$ field

Band	rms igls (Jy/beam)	rms naive(Jy/beam)	ratio
250µm	0.1749	0.2868	~ 1.6
350µm	0.1569	0.2302	~ 1.5
500µm	0.2659	0.4065	~ 1.5

SPIRE $l = 59^{\circ}$ field

Band	rms igls (Uy/	beam) rms naiv	e(Jy/beam)	ratio
250µm	0.09857	0	0.1123	
350µm	0.0734	0	.08164	~ 1.1
500µm	0.1073	0	0.2101	

Band	Nominal beam (")	Pixel size (")	Tot pixel
PACS 70	5.2	3.2	$\sim 1700 \pm 1700$
PACS 160	12.0	4.5	~ 1200 x 1200
SPIRE 250	18.0	6.0	$\sim 1000 \ge 1000$
SPIRE 350	24.0	8.0	\sim 700 x 700
SPIRE 500	34.5	11.5	~ 500 x 500

Pixellitation noise

- Time bolometer response
- Relative pointing error
- Coaddiction

. . .

Herschel map-making workshop 28-31/01/13

Alessio Traficante

PACS 70 μ m

Co-addiction

PACS 70 μ m on-board sample: 40 Hz

PACS 70 μ m data: 5 Hz

This is a (one of the) problem for ROMAGAL and all Fourier-based algorithms :

Co-addiction in time-space : convolution of TOD with a box-like function

Box function in Fourier space: RINGING!!!

Alessio Traficante

MANCHESTER

Scan-speed

Beam is highly scan-direction dependent

Beam distortion breaks GLS assumption (pointing matrix P)

Alessio Traficante

MANCHESTER

ROMAGAL PGLS

Cannot (?) be cured in a pre-process step

Solution: post-process artifacts analysis and removal PGLS/WGLS (MATLAB) Piazzo et al. 2012

Post Processed GLS (PGLS) is based on the following artifacts estimation step

- 1. Unroll the GLS map:
- 2. Remove signal:
- 3. Remove correlated noise:

Alessio Traficante

4. Estimate artifacts:

MANCHEST

$$d_u = P^T \tilde{m}$$
$$d_n = d_u - d$$
$$d_w = M(d_n)$$
$$m_a = P d_w$$

ROMAGAL PGLS

SAOImage ds9

File Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help

Hi-GAL 1323 PACS 70 μ m ROMAGAL

Credits: L. Piazzo

_ & ×

Alessio Traficante

MANCHESTER

ROMAGAL PGLS

SAOImage ds9

File Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help

Hi-GAL 1323 PACS 70 μ m ROMAGAL PGLS

Credits: L. Piazzo

_ & ×

Herschel map-making workshop 28-31/01/13

Alessio Traficante

MANCHESTER

ROMAGAL PGLS - WGLS

SAOImage ds9

_ 8 ×

Hi-GAL 1323 PACS 70 μ m artifacts

WGLS only adds noise where it is negligible (strong sources).WGLS maps have the same SNR as GLS maps.Credits: L. Piazzo

Alessio Traficante

MANCHESTER

Map scientific product

Still several steps before releasing scientific product!!!

MANCHESTER 1824 Alessio Traficante

Zero-level offset evaluation: cross calibration with PLANCK and IRAS

Bernard et al. 2010

- Set from empty regions of the sky using IRAS
- Also 2 Herschel bands in common with PLANCK: 350 and 500 $\,\mu$ m

- Hi-GAL data I_{λ}^{H} smoothed at 5' (PLANCK resolution)
- Data correlated with PLANCK+IRIS prediction I_{λ}^m

$$I_{\lambda}^{m} = I_{\lambda}^{H} \times scale + offset$$

PACS offsets

SPIRE offsets

Offsets follow the Galactic Structure

Alessio Traficante

MANCHESTER

Herschel map-making workshop 28-31/01/13

Credits: J.P. Bernard

Credits: J.P. Bernard

Brigthness continuity between the tiles after zero-level calibration

MANCHESTER

Science

Source extraction and photometry: CUTEX

Molinari et al. 2010

- Curvature-based source detection
- Optimized for source de-blending
- Specifically designed to extract sources in crowded fields like Hi-GAL

Hi-GAL 70 $\,\mu\,{\rm m}\,{\rm zoom}$

Second derivative

Preliminary catalogue in Hi-GAL "1" : ~ 400000 sources

Alessio Traficante

Map: science

Source extraction and photometry: CUTEX

An example: **filaments**

Hi-GAL 159: ~ 401 candidates identified in 160-250-350 μ m

Filamentary structures

Credits: E. Schisano

Molinari et al. 2010

Herschel map-making workshop 28-31/01/13

Alessio Traficante

200

MANCH

Map: science

- ROMAGAL maps calibrated and astrometrically registered (MIPS 24 μ m and/or WISE 22 μ m) available for Hi-GAL community
- ROMAGAL pipeline fully produced maps for Hi-GAL "1"
- 25+ works already published using ROMAGAL maps (e.g.: Galactic Center) Molinari et al. 2011

Map: science

... not only the Galactic Plane!

MAGAL M33 PACS 70 μ m naïve

M33 PACS 70 μ m ROMAGAL

Herschel map-making workshop 28-31/01/13

Alessio Traficante

MANCH

ROMAGAL?

For the whole Galactic Plane survey?

ROMAGAL pipeline requires:

- HIPE
- IDL
- Fortran90/95
- MATLAB
- \sim 6-7 h of processing per tile

Not really straightforward ...

Alessio Traficante

ламсн

UNIMAP

For the whole Galactic Plane survey?

UNIMAP

Thanks!!!

MANCHESTER

ROMAGAL

ROMAGAL (Roma Optimal Mapmaking Algorithm for HiGal survey) is the algorithm that implements this method, based on the ROMA code adapted and optimized for the HiGal contest

- ROMA already used for BOOMERanG 2003 (Masi te al. 2005)
- One of the main codes for PLANCK data analysis
- Parallel (MPI FORTRAN 95) code
- Direct estimation of noise from the data (see next talk)

MapMaking

We can model the time ordered data (TOD) **d** as:

