

PACS Benchmarking:

Comparison with Ancillary Data Sets II– Spitzer MIPS

Roberta Paladini - NHSC/Caltech

Procedure

To compare PACS and MIPS data:

- 1. We select data (galactic and extra-galactic) for which at least some good fraction of the data is in the linear regime (will return on this point later);
- 2. We convert PACS units from Jy/pixel to MJy/sr (MIPS units);
- 3. We convolve the PACS data to the MIPS angular resolution (19" *a* 70 micron and 40" *a* 160 micron):

$$fwhm_{eff} = \sqrt{(fwhm_{MIPS}^2 - fwhm_{PACS}^2)}$$

- 4. We apply color corrections and scaling factors as appropriate;
- 5. We generate scatter plots:

8 MIPS DATA SETS

- Antennae 70, 160 micron (Fazio pid 32)
- Crab 70 micron (Gehrz pid 130)
- IC348 70 micron (Muzerolle pid 40372/Rieke pid 58 → programs were combined)
- LDN1780 70, 160 micron (Gordon pid 40154)
 - M31 70, 160 micron (Rieke pid 99)
 - M81 70, 160 micron (Rieke pid 717)
- NGC 6946 70, 160 micron (Kennicutt pid 159)
 - **Rosette** 70 micron (Rieke pid 58)

ipac

DYNAMIC RANGE (max in MJy/sr)

70 micron 160 micron

Antennae	~ 600	~ 300
Crab	~ 500	-
IC348	~ 1000	-
LDN1780	~ 200	~ 150
M31	~ 200	~ 100
M81	~ 150	~ 100
NGC 6946	~ 350	~ 300
Rosette	~ 500	-

COLOR CORRECTIONS – I

- PACS color corrections from: PICC-ME-TN-038 (April 12 2011 -T. Muller)
- MIPS color corrections from MIPS Data Handbook (/http:// irsa.ipac.caltech.edu/data/SPITZER/docs/mips/mipsinstrumenthandbook/51/)
- Assumptions:
- → Galaxies (Antennae, M31, M81, NGC 6946): @ 20 K
- \rightarrow Crab: @ 50 K
- → LDN 1780: @ 20 K (NOTE: likely too warm, but not an issue..)
- → star formation regions (IC348, Rosette): @ 30 K

COLOR CORRECTIONS – II

PACS ^{cc} 70	PACS ^{cc} 160	MIPS ^{cc} 70	MIPS ^{cc} ₁₆₀	scale _{70-71.4}	scale _{160-155.9}	T _D
1.224	0.963	1.052	0.944	1.153	0.959	20 K
1.034	0.976	0.901	0.954	1.078	0.995	30 K
0.982	1.010	0.893	0.971	1.023	1.022	50 K

 $PACS^{cc'}_{\lambda'} = PACS_{\lambda} / PACS^{cc}_{\lambda} * Scale_{\lambda'}$ $MIPS^{cc'}_{\lambda'} = MIPS_{\lambda} / MIPS^{cc}_{\lambda}$

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

Multiband Imaging Photometer for Spitzer (MIPS): non-linearity – I

Flux non-linearity effects are known to affect Ge:Ga detectors

MIPS 70 micron: Ge:Ga 32 X 32 array

MIPS 160 micron: Ge:Ga 2 X 20 array

Documentation:

- Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. II. 70 micron imaging, Gordon, K. D., et al., 2007, PASP, 119, 1019
- Characterization of the MIPS 70 micron non-linearity, MIPS IST TN, Paladini R. & Noriega-Crespo, A., 2009 (<u>http://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/Non_linearity_70um_v2.pdf</u>)

ipac

MIPS non-linearity – II

PICC-NHSC-TR-034, April 2012 - Paladini, Linz, Altieri, Ali: https://nhscsci.ipac.caltech.edu/pacs/docs/Photometer/PICC-NHSC-TR-034.pdf

For the present analysis, we adopt 100 MJy/sr (~ 1 Jy) and 50 MJy/sr (~2 Jy) as thresholds for MIPS non linearity at 70 and 160 micron, respectively

WARNINGS/NOTES:

- No IC348/NGC6946 maps processed by JScanam
- MIPS processing is minimal at both 70 and 160 micron: mosaics are combined with MOPEX starting from archive BCDs

• Since not all PACS mappers provide errors, for consistency fitting was performed setting all weights = 1 (PACS & MIPS)

Antennae – 70 micron / linear

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

13

Antennae – 160 micron/linear

Crab – 70 micron/linear

IC348 – 70 micron

IC348 – 70 micron/linear

LDN 1780 – 70 micron/linear

LDN 1780 – 160 micron

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

LDN 1780 – 160 micron/linear

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

23

M31 – 70 micron/linear

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

24

M31 – 160 micron/linear

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

M81 – 70 micron

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

27

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

M81 – 160 micron

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

29

M81 – 160 micron/linear

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

NGC6946 – 70 micron

ipac

NGC6946 – 70 micron/linear

NGC6946 – 160 micron

NGC6946 – 160 micron/linear

ipac

Rosette – 70 micron/linear

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

Summary: offsets₇₀ (linear)

	Jscanam	Scanamorphos	MADMap	Tamasis	Unimap
Antennae	-22.35	-20.07	-18.70	-37.41	-19.29
Crab	-30.63	-28.86	-24.51	-48.30	-29.08
IC348		-6.18	+67.77	-249.23	-68.88
LDN1780	+36.45	+34.11	+53.24	+5.46	+33.03
M31	-14.51	-15.28	+ 3.51	-10.05	-15.00
M81	-15.57	-13.73	-9.90	-33.99	-15.27
NGC6946		-19.19	-19.05	-39.54	-15.53
Rosette	-305.73	+64.71	-24.27	-191.96	+52.16

Summary: gains₇₀ (linear)

	JScanam	Scanamorphos	MADMap	Tamasis	Unimap
Antennae	1.13	1.09	1.09	1.09	1.10
Crab	0.89	0.92	0.97	0.94	0.94
IC348		1.16	-1.06	0.88	1.07
LDN1780	-0.61	-0.52	-0.48	-0.47	-0.51
M31	1.13	1.33	1.31	1.34	1.31
M81	1.40	1.35	1.34	1.37	1.38
NGC6946		1.38	1.39	1.39	1.42
Rosette	2.26	0.97	0.88	1.02	0.91

Summary: offsets₁₆₀ (linear)

	JScanam	Scanamorphos	MADMap	Tamasis	Unimap
Antennae	+19.82	-15.70	-11.47	-28.70	-14.42
LDN1780	-17.79	-19.96	+23.28	-30.80	-17.37
M31	-11.57	-16.24	-13.77	-38.96	-17.75
M81	-13.05	-16.76	+2.60	-16.86	-16.30
NGC6946		-20.17	-22.52	-41.74	-19.10

Summary: gains₁₆₀ (linear)

	JScanam	Scanamorphos	MADMap	Tamasis	Unimap
Antennae	0.68	0.79	0.78	0.73	0.81
LDN1780	0.77	0.87	-0.07	0.76	0.76
M31	0.92	1.03	0.94	0.89	0.88
M81	1.07	1.13	1.13	1,04	1.11
NGC6946		0.63	0.75	0.71	0.63

Offsets I - 70 micron/linear

ipac

Offsets I - 160 micron/linear

Gains I - 70 micron/linear

Gains I - 160 micron/linear

Herschel PACS and SPIRE map-making workshop - ESAC – January 28th to 31st 2013

44

Offsets II - 70 micron/linear

Offsets II - 160 micron/linear

Gains II - 70 micron/linear

Gains II - 160 micron/linear

Summary

- When MIPS non-linearity effects for both 70 and 160 micron are taken into account, we obtain an average agreement between the PACS and MIPS observations at these wavelengths of the order of ~15% ($< gain_{70} > = 1.17 + /-0.26$), $< gain_{160} > = 0.86 + /-0.16$)
- For each data set, different map-making approaches seem to recover approximately the same offsets
- Importantly, one has to consider that given the amount of uncertainties involved in this comparison (e.g. non-linearity effects, color corrections, beams, etc.) such a comparison is only <u>indicative</u> of the PACS extended emission calibration