

PACS-IRAS comparison at 100 μm

Babar Ali NHSC

28-30 Jan 2013

Map-making Workshop, ESAC

1

Why IRAS

- Pros:
 - All sky, calibrated survey
 - Color-corrections are minimal or none
 - Wavelength corrections is 0.
- Cons:
 - Beam are vastly different
 - Source Confusion and beam comparison provide plenty of pitfalls

Introduction

- Compare PACS surface brightness values pixel-by-pixel directly with those measured by IRAS at 100 microns.
 - We expect surface brightness zero-points to differ.

Follows PICC-NHSC-TN-029

 Use IRIS images, instead of originals

 Step 1: Unit conversion

 For PACS nominal pixels

Blue or Green :
$$1 \frac{Jy}{Pixel} = 4154.80 \frac{MJy}{SR}$$

Step 2: Color- and Wavelength Corrections

- Both data report at 100 μ m, no λ correction needed.
- Relative color correction values
 - ISM: 1% (PICC-NHSC-TN-029)
 - Galaxies: ? 2-3% ?

Step 3: Beam Convolution

 IRIS images resampled to Homogenous beams

	WAVELENGTH				
QUANTITY	12 µm	25 µm	60 µm	100 µm	
1. IRAS resolution (arcmin)	0.75 × 4.5	0.75 × 4.6	1.5 × 4.7	2.0 × 5.0	
2. IRIS resolution (arcmin)	3.8 ± 0.2	3.8 ± 0.2	4.0 ± 0.2	4.3 ± 0.2	
. ISSA noise level (MJy sr ⁻¹)	0.04 ± 0.01	0.05 ± 0.02	0.04 ± 0.01	0.07 ± 0.0	
. IRIS noise level (MJy sr ⁻¹)	0.04 ± 0.01	0.05 ± 0.02	0.03 ± 0.01	0.06 ± 0.0	
DC/AC	0.78	0.82	0.92	1.00	
. <i>G</i> _λ	1.06 ± 0.02	1.01 ± 0.02	0.87 ± 0.05	0.72 ± 0.0	
7. DIRBE S(gain) (%)	5.1	15.1	10.4	13.5	
8. DIRBE S(offset) (MJy sr^{-1})	6.0×10^{-5}	8.3×10^{-5}	0.027	0.027	

- For this comparison:
 - Using Gaussian kernels to represent IRIS beams
 - Normalized to unity to 7.5' radius

Step 4: Regrid to a common WCS

- Allows pixel-by-pixel comparison
- Use IDL/Astrolib code 'HASTROM'

Steps 1-4 illustrated

Step 5: Check for astrometry differences

Use peaks in emission to identify astrometry shifts

Step 6: Model pixel-by-pixel comparison as:

$$I_{\lambda}^{\mathrm{X}} = G_{\lambda} \times I_{\lambda}^{\mathrm{PACS}} + B_{\lambda}$$

- Where, X=IRIS, in this case.
- We expect B (zero-points) to vary.
- We expect G, to be near unity.

Pixel-to-pixel comparison

Available Fields

- Five 100µm images included
 Atlas field (cosmology field)
 M31 (very large galaxy)
 - NGC 6946 (large galaxy)
 - Polaris (ISM field)
 - Sa 187-188 (Galactic regions)

Results: Atlas

Not useful for comparison.

28-30 Jan 2013

Results M31

28-30 Jan 2013

28-30 Jan 2013

Results NGC 6986

Results Polaris

Too faint, better suited for other comparison metrics.

Sa 187-188 Field

Sa 187-188 Field

But, no meaningful correlations. Not understood.

28-30 Jan 2013

Summary

Five 100µm images included
 Atlas field (too faint)
 M31 (ok)
 NGC 6946 (ok)
 Polaris (too faint)
 Sa 187-188 (bad fits)

Gain Factors

Field	Scanam	MADmap	Unimap	Tamasis	JPScanam
M31	1.30	1.51	1.30	1.23	1.24
NGC 6946	1.89	1.59	1.93	1.40	-

This comparison

	Gain Factors
SAp-PACS-MS-0718-11	20-30%
PICC-NHSC-TN-029	1.14-1.27

Previous Results

Is this a beam effect?

What about IRIS calibration?

the DC/AC factor (responsivity at 5' scale) and the responsivity at scale of 1°.25 (deduced from the comparison of *IRAS* and DIRBE with scale and brightness—see § 4.3). The largest responsivity difference between these two scales is in bright regions where it reaches ~20% (see Fig. 8). We estimate that the typical uncertainty on the responsivity at scales smaller than 1°.25 is ~5% for the four bands.

In comparison with DIRBE: **Typical uncertainty ~5%** Largest ~20%

Conclusions

- Only two useful 100μm comparison fields in this selection.
- Difficult to interpret the results:
 - Accurate beam profiles are critical for comparing the results to IRAS
 - We are likely seeing effects of beam inaccuracies
 - Combined Calibration uncertainties are of the order of discrepancy in Gain factor. Or,
 - Too few data points available for proper fits

Conclusion

- Current effort is not sufficient.
 - dominated by IRIS, PACS and beam uncertainties dominate the comparison
- We require:
 - A dedicated, large, study of several large (>1 degree) fields at 100 µm to beat down the systematic errors.

For map-making purposes ...

- Mappers are generally consistent with each other:
 - Within the small number statistics available here.
 - For M31, MADmap slightly higher than others
 - For NGC 6946, large dispersion of Gain factor values within the map-makers