MESS - PACS Images and Deconvolution

Roland Ottensamer (Uni Vienna) on behalf of the MESS consortium

Herschel Map-Making Workshop, ESAC, 28-31 Jan 2013

MESS - Mass loss of Evolved StarS

KP to study the circumstellar matter in evolved objects PI: Martin Groenewegen, OMA Groenewegen et al. 2011

AGB, Post-AGB, PNe, RSG, WR, LBV, SN focusing on nearby objects

Mass-loss dominates the evolution How? How much? Time evolution? Geometry? Dust species? Influence on PN shape? ISM interaction?

PACS+SPIRE, Phot+Spec

. . .

Fig. 2. 160 μm image of Y CVn taken with PHT-C200 array detector and C160 filter displayed in linear brightness scale

Y CVn Izumiura et al. (1996), 8'× 35' ISOPHOT map

using GT from: Belgium, SPIRE SAG-6, Vienna, Heidelberg, HSC, MS

SDP_mgroen01_3: 20.8 h KPGT_mgroen01_1: 286 h GT2_mgroen01_6: 5.1 h

Implementation (Photometry)

~2/3 of the observation time are devoted to imaging.

~3/4 of the imaging is done with PACS

PACS: "Scan Maps" at 70 + 160 μm

medium (20"/s) speed 30' map size scan + cross-scan, 3-8 repetitions

SPIRE: "Large Maps" at 250, 350, 500 µm

plus a few observations in parallel mode / other configurations.

PACS Photometry

78 observations of AGB and RSG stars, allowing a first classification into four distinct classes:

Cox et al. 2012

Wind-ISM Interaction

Bow shocks Mayer et al. 2012

- feature is shock front & tail structure
 Wind hits ISM highly supersonic
- only AGB stars with high proper motion from bow shocks (vLSR > 40 km/s)
- most common morphology in MESS sample, $\sim 1/3$

$$R(\theta) = R_0 \csc \theta \sqrt{3(1 - \theta \cot \theta)}.$$

$$R_0 = \sqrt{\frac{\dot{m}_w V_w}{4\pi\rho_a V_*^2}}$$

Gas vs dust density, van Marle et al. 2011

Detached Shells

Fit radial profiles and spectra with synthetic models to derive Temp, C/O, Mass, Dust composition Mecina et al. 2013

> Dust observations from Herschel are very well aligned with CO observations! Kerschbaum et al. 2011, Mecina et al. 2011

U Cam

Imaging Highlights

CW Leo, Decin et al. 2012

not deconvolved

deconvolved

Mira, Mayer et al. 2011

Betelgeuse, Decin et al. 2012

Typical Dataset

1-20 min per scan3-8 repetitions per scanMaps at 1" resolution

Photometry of:

- very bright Star (1-1000 Jy)
- faint features close to the star
- ISM BG

PACS B observation processed by users with different mappers.

U Cam, 1342229979, 1342229980 1" map resolution

2 weeks time and some technical support given.

Phot Project with masked HP filter

PROS:

- comes with HIPE
- easily customizable

- very basic method
- single threaded
- memory limited
- very sensitive to filter width
- shadows around bright sources
- removes extended emission

HIPE: MADMap

PROS:

- comes with HIPE
- customizeable
- visually better than PhotProject (especially BG at lower res.)

- X-artefact
- signals fade for high resolution
- border influeces the image
- single-threaded
- memory limited

Scanamorphos:

PROS:

- no artefacts
- handles bright point sources
- works at high resolution
- smooth background
- fast and uses little resources

- a bit of a black-box
- virtually no parameters to tune
- takes away too much faint flux
- single-threaded
- memory limited
- IDL? We are not amused!

The Part of the second

Sale Loro

Unimap:

PROS:

- very smooth backgrounds
- no X-artefacts
- good borders

- loses weak signals
- single-threaded
- memory limited

Tamasis:

PROS:

- supreme approach
- very fast P^TP
- computationally extremely well implemented
- makes use of cluster hardware
- very modular
- measurement model customizable
- works with high resolution
- good BG flux

- single-threaded bottlenecks,
 e.g. InvNTT convolution
- X-artefact

Sanepic:

PROS/CONS: can't tell...

... image from above would take 5 months to calculate!

- makes use of cluster hardware
- still, noise correlation matrix inversion takes forever
- 2048 pixels are simply too much
- number of file descriptors per bolometer per process exceeds normal kernel limit

Aperture photometry agrees within few %

Radial profiles diverge on the star as well as in the field

MESS Data Reduction

Current baseline: use Scanamorphos

Bulk data processing on the Shell:

- Scripts for archive access invoking HIPE scripts through jylaunch
- Scripts for L1 generation controlling a tuned pipeline script
- Scripts for running Scanamorphos (IDL) invoking frame preparation and Scanamorphos

Herschel/PACS PSF

Some observed MESS targets are scientific misses: No resolved dust features: perfect PSFs! AFGL190, AFGL618, AFGL3068, OH127.8+0.0, IRAS 11385-5517 ...

for PACS G channel use: Ceres and Vesta observations

PACS 70µm synthetic PSF N.Geis, D.Lutz

measured PACS B PSF

2 Problems with the PSF

NGC 7027: Exter et al. 2012 need to lift the "haze" by PSF

U Cam central part: need high resolution Mecina et al. 2011

Deconvolution in HIPE

Generation of PSF

- selection of PSF source to match in intensity
- PSF ideally comes from the same mapper as the observation
- align rotation according to position angle
- too little PSFs available to cover colour (SED)

Deconvolution

We already have many algorithms implemented in HIPE

Output datasets

generated PSF, Re-convolved image and residuals to help decide on features/artefacts

Conclusion

3 ways to further improve the MESS imagery:

Astrometry -- PSF -- X-artefact

Pointing correction, field distortion

improve map resolution and SNR big influence on deconvolution artefacts

We will never have "ideal" PSFs! need to take care of that fact in deconvolution algorithm

Alternative to a-posteriori deconvolution: implement PSF in Tamasis measurement model

Mappers

find a way to get rid of the X-artefact! apply Unimap stategy to Tamasis?