PACS instrument

ESAC, Map-making workshop 28 January 2013

Optical layout

Two instruments in one

Photometer

two field silicon bolometers

Spectrometer

- Ge:Ga photoconductors arrays
- Integral field spectroscopy
- 55-210 micron

Poglitsch+2010 A&A, 518, L2

Filled silicon arrays

Fully sampled image, no feedhorn

PACS photometer: dual band imaging

- **Two filled bolometer arrays** in dual band imaging:
 - 64x32 pixels at 70 & 100µm
 - 32x16 pixels at 160µm
- Field-of-view: 1.7'x3.5'
- Build-up of maps by scanning in a boustrophedon fashion.
- PSF FWHM: 5.5", 6.7" and 11.5"
- 40Hz readout frequency
- on-board co-adding, to stay within allocated 130kb/s rate downloaded frequency : 10Hz (prime) and 5 Hz in parallel in the blue channel)

Two observing modes

Two spatial modulation techniques to extract faint sources from the high telescope background:

- **1. Chopping/nodding**, to move the source by about one blue channel matrix at 1.25Hz and nodding in the perpendicular direction
 - degraded sensitivity compared to pre-flight predictions
 - Not used for science but kept for calibration (photometry & pointing monitoring)

2. Scan mapping

• Allows to relatively small (mini-scan maps) to very large areas (fast scan, e.g. parallel mode)

Scan mapping principle

1. In reference frame "array" in HSpot

- a. α fixed, constraint on β is possible
- b. Selection of homogeneous coverage offered in HSpot.

Data cubes

Most sources will not be visible on single frames due to intrinsic offset dispersion. Signal dispersion ~ 30000 ADU

Drizzling technique to project map

- 1/f noise filtering
- Projection (pixel size and drop size)

Somewhere on the galactic plane

HiGAL OT KP (S. Molinari) 160um 2x2 degrees

CALIBRATION PHILOSOPHY

Flux calibration (responsivity & EEF (Encircled Energy Function) relies on stellar photosphere models of standard stars. Point-source photometry accuracy of 5% in the 3 bands

Table 8: Observed and calibrated ("FM, 6") monochromatic flux densities at 70, 100, $160 \,\mu\text{m}$ divided by the corresponding model predictions for all 5 fiducial stars.

Target	blue obs/model				green obs/model					red obs/model		
name	no.	median	mean	stddev	no.	median	mean	stddev	no.	median	mean	stddev
β And	2	· · · · ·	1.011	0.015	2	· · · · · · · · · · · · · · · · · · ·	1.013	0.010	2	(<u> </u>)	0.993	0.018
α Cet	3		1.011	0.008	3		1.007	0.005	3		0.999	0.020
α Tau	4		0.987	0.011	4		0.979	0.009	5		0.978	0.011
α Boo	3	1 <u>0</u> 0-	1.000	0.012	3		1.000	0.009	3	· · · ·	1.007	0.012
γ Dra	23	0.985	0.983	0.009	8	1.000	0.991	0.016	28	1.010	1.016	0.039
$\rm mean/stddev$		$0.999{\pm}0.013$			$1.000{\pm}0.013$				$0.997{\pm}0.013$			

But (point-source) photometry depends very much on exact data processing if one targets the few % level

- high-pass filter width (if photProject is used), pixel size and drop size (drizzling)
- size of masking area(s)

• aperture radius

CALIBRATION PHILOSOPHY

The estimated **absolute flux accuracy for point sources** is better than 5% in the 3 bands

http://www.herschel.be/twiki/pub/Public/PacsCalibrationWeb/PhotMiniScan_ReleaseNote_20101112.pdf

v2.0, 12 November 2010, T. Müller et al.

PACS PSF

The core of the PSF is in line with expectations: it is diffraction limited

core gaussian

The outer structure is due to deformation of primary mirror from its support

Important note: there is not a unique standard PSF, as it depends on :

- scan angle
- scan speed
- data processing: type of projection, highpass filter width ...

Lutz, 2012 (PICC-ME-TN-033)

The PSF is distorted at high scan speeds

Including multiple scan directions, this could lead to single, double, triple or quadruple tailed PSFs

Lutz, 2012 (PICC-ME-TN-033)

PACS PSF

PSF wings

• Extremely bright point sources show structure several arcminutes away

• Up to **10%** of the flux in PSF wings beyond 1 arcmin (strikes)

Mars PSF

Aperture corrections

European Space Agency

Conclusions

- 1. Absolute photometry accuracy of 5% for point sources
 - Limited by photosphere models and absolute K-band groundbased photometry
- 2. Absolute photometry accuracy of **10%** for **extended emission**
 - from additional beam/PSF characterization
 - Very conservative, so it seems an upper limit.
- 3. PSF/EEF based on high-pass filtered maps, hence the derived responsivity (Jy/pixel) while other mapper might have slightly different PSF at a few % level.
- 4. Open Issue
 - Pointing reconstruction
 - ✓ Focal Plane Geometry (time dependence ?)
- □ Missing : a reference paper for the PACS photometer calibration
 - ✓ Several TNs so far on HSC PACS web page
 - Official statement on extended emission photometric accuracy.

Which map-maker to use for extended emission ?

- 1. MADmap
- 2. Scanamorphos
- 3. JPScanam
- 4. Unimap
- 5. Tamasis
- 6. Sanepic
- 7. Supreme (for PACS ?) hipe plug-in already
- Hopefully the answer in this workshop !
- Level 3 maps in HSA by SPG11 or 12: stacking on a given field
 - HPF maps
 - MADmap