H-ATLAS and HeViCS: Map-making and Flux Extraction with Parallel Observations (+ more)

Matthew Smith, Edo Ibar, Jacopo Fritz, Michael Pohlen

Matthew.Smith@astro.cf.ac.uk

Talk Outline

- The Surveys
- PACS data reduction
 - PP versus Scanamorphos
 - Best of both worlds? (nebuliser + swarp)
- SPIRE data reduction
 - BriGAdE / Alternative thermal drift
 - Developed Tasks
 - Source Extraction

H-ATLAS
PACS-SPIRE parallel mode
~550 sq. deg

Herschel Virgo Cluster Survey (HeViCS)

- Otherwise known as DAVIES
- 8 parallel scans
- 100, 160, 250, 350 and 500µm
- ▶ 80 sq. deg
- \blacktriangleright Noise ~ 0.3 \times confusion for SPIRE

Reduced Data Products

H-ATLAS

- http://www.h-atlas.org/
- Full maps available (DR2 soon)
- Source Catalogues
- Cut-outs server (SDSS, UKIDSS and H-ATLAS data)

HeViCS

- http://www.hevics.org/
- Full maps
- Source Catalogues
- Both sites are linked to Herschel User Reduced Data site

PACS Data Reduction

Level 0 to Level 1

- 1.4 x 10⁵ frames per timeline in a 9hr observing run (~16 sq. deg)
- Require a machine with 150Gb RAM + 100 Gb SWAP memory
- Timelines mostly dominated by 1/f noise
- Astrometry is corrected by matching to SPIRE corrected maps (see later)

Artefact Identification

- Challenging stages has been the automatic detection of several features
- Ros Hopwood has written a detection and correction routine
- Downside is time consuming
- Quantify shape of the artefact so can best correct the timelines

Artefact Identification

- Experimented with identification and reconstruction
- Step like features relatively easy
- Exponential works tends to work well for megafaders/cal-spikes. If the X² is bad the data is flagged

High-Pass Filter Problem

Best of Both Worlds

- ATLAS want a single map with both:
 - Mostly point sources so want good point source sensitivity
 - Many slightly extended structure of galaxies (largest source ~2.5') ignoring cirrus
 - Investigating two methods:
 - SANEPIC
 - Alternative method based on scanamorphos I'll go into detail
- Multi-stage process:
 - Use scanamorphos to create each tile
 - Apply Nebuliser to remove large-scale structure
 - Mask out regions not covered by both scan directions
 - Use swarp to mosaic all the tiles together to give an overall map

BOBW: Scanamorphos tile

 First run scanmorphos on an individual tile

Nebuliser

- Cambridge Astronomical Survey Unit (IoA) <u>http://apm49.ast.cam.ac.uk/</u>
- The background is modelled by a series of interactive sliding median and mean filters that are applied to each axis or to both simultaneously.

BOBW: Swarp Mosaic

Use SWARP to mosaic the individual tiles into a complete field.

http://astromatic.iap.fr/software/swarp

How Does It Compare?

- Initial figures suggest comparable point source sensitivity to high-pass filter map
- Injected sources up to 2.5' are preserved in the map
- Further tests in the next couple of weeks

SPIRE Data Reduction

Motivation alternative L1-L2

- Optimal strategy for Extra-galactic fields
- At time the standard pipeline did not include thermal drift correction
- De-striper only recently became possible but is very time-consuming for these large surveys
- Only change to L0-L1 are:
 - Sigma-kappa deglitcher (better for faster scan rates and lower sample rates)
 - No thermal drift correction applied

Motivation (2)

Jump Correction

- All scan legs and turnaround regions are combined to give one continuous timeline
- Thermistor (or dark pixel) 'jumps' are manually located (using kst) and corrected in the timelines

Thermal Drift Correction

BriGAdE (SAG2 + HeViCS)

- Originally developed for SAG2 (i.e., HRS, VNGS, DGS, HELGA)
- Intrinsically corrects 'cooler burps'
- Uses any combination of two thermistors or dark pixels timelines (usually T1 + T2) to remove thermal drift from bolometer timelines
- Thermistor signal is smoothed (using a low pass filter) to prevent noise being added
- Automatically masks sources

BriGAdE (2)

BriGAdE (3)

- Smoothed thermistor timelines are then fit to the bolometer timeline assuming a linear relation.
- The thermistor with the best fit to the bolometer is then used to remove the scaled baseline
- For large maps (i.e., HeViCS) perform the fit on a per-scan basis. Maps of individual objects are done for the whole timeline
- No further baseline removal is required
- ▶ Use a default pixel size of 6, 8, 12".

Glitch Tails

- Glitch tails are glitches where the entire glitch has not been masked
- Locate in timelines using script which identifies bolometers crossing pixel and plots an image

Bolometer Jumps

Too time consuming to check every timeline manually. Use same script to locate the bolometer

Average rate of ~4 per 8 hour HeViCS observation

Examples - SAG2 maps

Examples - Large Parallel Maps

HeViCS 8-scan. 99.5% cut

Examples - Large Parallel Maps (2)

The H-ATLAS pipeline

- Very similar to BriGAdE
- Pascale et al. 2011
- No source masking as bright extended sources are rare.
- Instead of thermistor fitting on a per-scan the whole timeline is used and a 4° high-pass filter

NGP

- ▶ ~182 deg²
- ~68,000
 sources
 > 5σ

Second order de-glitching

- Manual identification only locates the strongest artefacts.
- Many bright single pixels

Second order de-glitcher (2)

- Script based on one by Andreas Papageorgiou (with some modifications)
- Process:
 - Create low resolution map (PSW:18", PMW:24", PLW:36")
 - Loop over all bolometer samples (exlc. dead/flagged etc)
 - Sample identified as a glitch if,

$$\left|\frac{(Flux_{sample} - Flux_{Map})}{(Error \times \sqrt{N_{sample}})}\right| > Threshold$$

N_{sample} is from coverage Error is from error extension

• Create new map and keep iterating (I set a max of 4)

Second order de-glitching

- HeViCS fields are ideal due to high coverage, but also works well for H-ATLAS
- The data have been reduced with the sigmaKappa deglitcher (as found works better for parallel mode)
- Not efficient to use de-striper as data set is too large
- The process converges with small number iterations (1 8-scan tile ~1.5hr)

For one tile

Iteration	Number Samples
1	146558
2	4336
3	184
4	26

Second order de-glitching (results)

• Difference map shows no tendency to mask sources

Significance	Number Samples
Total (any $>4\sigma$)	151104
4 - 5 σ	128047
5 - 6 σ	14573
6 - 7 σ	4362
7 - 8 σ	1748
>8 o	2374

Number of Samples

Astrometry

- Both H-ATLAS and HeViCS check the astrometry of each individual tile.
- Usually a fixed offset w.r.t. reference image (no overall rotation).
- Two methods applied:
 - Cross-correlation method
 - Matched point sources to external catalogue

Usually just done for SPIRE as many more sources

Astrometry (2)

~2" offsets in RA and Dec

Number in Bin

Error Maps: they're worth a look

Asteroid: Nemesis

MAD-X Source Extraction

- S. Maddox et al. in prep
- Method to identify point sources on background removed maps
- Convolve each band with the PSF (or for confusion dominated other filters may be better)
- Weight each band, and locate peaks in combined image. (In practice often 250µm)
- Can weight bands differently for specific populations.

HeViCS Source Extraction

- HeViCS XII: Auld et al. 2012
- 254 of 750 VCC galaxies found
- Fluxes, Dust masse and upper limits fo all VCC objects in the field

2

Radius (arcmin)

Thank You For Listening

Any Questions?