Herschel PACS/SPIRE map of Aquila (Gould Belt survey)

Ph. André, A. Men'shchikov, N. Schneider,
S. Bontemps, D. Arzoumanian, N. Peretto,
P. Didelon, P. Palmeirim, F. Motte,
A. Maury, and the SPIRE SAG3 cons.

From interstellar filaments to prestellar cores/protostars

Selected results of the Herschel Gould Belt survey and map-making issues

OUTLINE OF THE TALK

http://oshi.esa.int

- Introduction
- The Herschel Gould Belt survey
 - Aquila
 - Orion B
 - IC5146
 - Taurus
 - A coherent star formation scenario

HERSCHEL Gould Belt survey (HGBS)

Herschel Gould Belt Key Program (André et al. 2010)

- wide-field submm continuum survey with SPIRE/PACS
- 461 hrs of GT (SPIRE+PACS Consortia)
- in nearby star-forming cloud complexes ($d \le 500$ pc) of the Gould Belt
- probes the origin of the stellar masses

Scientific motivations, goals:

- What is the link between the prestellar CMF and the stellar IMF
- ➡ To provide a complete census of prestellar cores and protostars
- ➡ To unravel the core formation mechanisms

http://gouldbelt-herschel.cea.fr

INTRODUCTION

THE HERSCHEL PROMISE

Herschel is ideally suited for taking a census of resolved cores and protostars in nearby molecular complexes ($d \le 0.5$ kpc):

- in the 0.01–0.1 pc size range
- down to $M_{\rm proto} \sim 0.01 0.1 M_{\odot}$

Herschel bands are essential for luminosity and temperature determinations

Spectral energy distributions (SEDs)

HGBS: SOME "TECHNICAL" DETAILS

OBSERVATIONS, DATA REDUCTION

Observations of HGB survey fields

- With SPIRE/PACS parallel-mode of Herschel.
- Large scan maps, taken with 60"sec⁻¹ scanning speed
- Several subfields observed in PACS-only mode (100/160 μm, 20"sec⁻¹ scan. speed.

Data reduction

SPIRE 250/350/500 µm (reduced by N. Schneider):

• Using HIPE for data processing; map making with HIPE 'naive' method.

PACS 70/160 µm (reduced by V. Könyves):

• HIPE for data processing; map making with **Scanamorphos** (Roussel 2012, subm.).

HGBS: SOME "TECHNICAL" DETAILS

OBSERVATIONS, DATA REDUCTION

Observations of HGB survey fields

- With SPIRE/PACS parallel-mode of Herschel.
- Large scan maps, taken with 60"sec⁻¹ scanning speed
- Several subfields observed in PACS-only mode (100/160 μm, 20"sec⁻¹ scan. speed.

Data reduction

SPIRE 250/350/500 µm (reduced by N. Schneider):

• Using HIPE for data processing; map making with HIPE 'naive' method.

⇒ destriper

PACS 70/160 µm (reduced by V. Könyves):

 HIPE for data processing; map making with Scanamorphos (Roussel 2012, subm.). (started with photProject and MADmaps ⇒ Scanamorphos v19/v20)

Herschel Gould Belt Survey Archives: http://gouldbelt-herschel.cea.fr/archives

SELECTED DATA ANALYSIS STEPS WE START WITH...

Filamentary studies

Palmeirim et al. 2012

Aquila, Polaris, IC5146, Pipe, Tau.:

André et al. 2010, Men'shchikov et al. 2010,

Arzoumanian et al. 2011, Peretto et al. 2012,

Starless cores, YSO studies

Aquila, Polaris, Lup., Per., Cham.: André et al. 2010, Könyves et al. 2010, Bontemps et al. 2010, Men'shchikov et al. 2010, Ward-Thompson et al. 2010, Rygl et al. 2013, Pezzuto et al. 2012, Winston 2012

For data analysis we leave HIPE:

Used tools, for e.g.: getsources (Men'shchikov et al. 2012), IDL, GILDAS, DisPerSE (Sousbie 2011), etc...

Map-making Workshop, ESAC, Jan., 2013.

HGBS: SOME "TECHNICAL" DETAILS SOURCE DETECTION, IDENTIFICATION, PHYSICAL PROPERTIES

Source extraction

Compact sources were extracted from the SPIRE/PACS images **using getsources**, a multi-scale, multi-wavelength source finding algorithm (Men'shchikov et al. 2012).

Within getsources, we use aperture correction ("new" Encircled Energy Fractions).

Dust temperature (T_{d}) and column density (Σ) maps

- Weighted SEDs for all map pixels from the 5 SPIRE/PACS wavelengths.
- SEDs fitted by a greybody, $I_v = B_v(T_d)(1 e^{-\tau v})$

I_v: observed surface brightness at ν; $\tau_v = \kappa_v \Sigma$: dust optical dept; κ_v : dust opacity per unit (dust+gas) mass, $\beta = 2$ (e.g. Hildebrand 1983).

• T_{d} and Σ were derived from the fit to the 5 Herschel data points for all pixels.

AQUILA

Highlights:

- Prestellar cores
- CMF
- Lifetimes
- Core formation "threshold", PDF

HGBS: THE AQUILA FIELD

RGB COMPOSITE

Map-making Workshop, ESAC, Jan., 2013.

HGBS: AQUILA

SOURCES IN THE AQUILA MAIN PART

In Aquila -entire- field (~10 deg²):

- ~ 500 starless cores (O)
- ~ 350 prestellar cores (60 %)
- ~ 200 protostars (O)

(~ 35 class 0)

Background: column density map (Planck offsets added)

André et al. 2010 Könyves et al. 2010 Bontemps et al. 2010 Maury et al. 2011

Map-making Workshop, ESAC, Jan., 2013.

HGBS: AQUILA

CORE MASS FUNCTION (CMF)

André et al. 2010 Könyves et al. 2010

 10^{2}

 10^{1}

1

 10^{-1}

10-2

 10^{-3}

Mass, M (M_{\odot})

Aquila entire 111111

 10^{-2}

rOph cores

NGC2068/2071 core

Mass vs. size diagram comparing the locations of ~300 candidate prestellar cores (\triangle), and the rest starless cores (\triangle), to both models of critical isothermal BE spheres (at T=7K, T=20K) and observed prestellar cores (Motte et al. 1998, 2001).

 10^{-1}

Deconvolved FWHM size, R (pc)

Differential mass function of >400 starless cores in the entire Aquila field. ~60% of them is bound, a.k.a., prestellar cores.

Lognormal fit peaks at ~ 0.6 M_{\odot} fitted power-law: dN/dlogM \propto M^{-1.5±0.2}

The fitted properties are robust

In the end the whole survey will be used to fully characterize the nature of the CMF-IMF link

HGBS: AQUILA

STAR FORMATION THRESHOLD?

Strong evidence of a column density "threshold" for the formation of prestellar cores in Aquila

In Aquila, ~ 90% of the Herschel prestellar cores are found above $A_v \sim 7 \Leftrightarrow \Sigma \sim 150 M_{\odot} \text{ pc}^{-2}$

Distribution of bg cloud column densities 'behind' the prestellar cores.

PDF of column densities in Aquila

Highlights:

- Cores, potostars
- Core formation "threshold"

• PDFs

Orion B south

Herschel Gould Belt Survey

Orion B center

Schneider et al., subm. Könyves et al. in prep.

Map-making Workshop, ESAC, Jan., 2013.

Vera Könyves

RGB - 70/160/250 μm

Orion B north

Herschel Gould Belt Survey

RGB - 70/160/250 μmKönyves et al. in prep.
Schneider et al. in prep.

Map-making Workshop, ESAC, Jan., 2013.

~10 pc 2°00'00" L162 (J2000 Δ NGC2071 10²¹ Declination ...00,00.00 NGC2068 Δ NGC2024 -2°00'00'' NGC2023 $N_{H2}(cm^{-2})$ 00^s 5^h50^m00^s Right Ascension (J2000)

SOURCES IN ORION B

In Orion B, entire field (~15 deg²): ~ 400 starless ~ 350 prestellar (> 80 %, \triangle) ~ 60 protostars (\clubsuit) (~ 20 class 0) Preliminary numbers!

Background: column density map (Planck offsets added)

Map-making Workshop, ESAC, Jan., 2013.

Könyves et al. in prep.

STAR FORMATION THRESHOLD?

Strong evidence of a **background extinction / column density "threshold"** for the formation of prestellar cores in Orion B

In Orion B, > 75% of the Herschel prestellar cores are found above $A_v \sim 7 \Leftrightarrow \Sigma \sim 150 \text{ M}_{\odot} \text{ pc}^{-2}$

Distribution of background extinction 'behind' the prestellar cores.

COLUMN DENSITY PDFs

Map-making Workshop, ESAC, Jan., 2013.

IC5146

Highlights:

- Filaments with uniform inner widths
- Connection of cores with filaments

HGBS: FILAMENTS

BACKGROUND AND DEFINITIONS

"Filamentary" background and definitions

Interstellar filamentary structures:

- Everything which is elongated (aspect ratio > 2) in column density maps
- exhibits a central ridge
- no characteristic mass, nor size

Hydrostatic equilibrium solutions of isothermal infinite cylinders are given by Ostriker (1964):

- density profile $\rho \propto r^{-4}$, and
- critical mass per unit length $M_{\text{line,crit}} = 2c_s^2/G$

Criterium for fragmenting filaments (Inutsuka & Miyama1997):

- If $M_{\text{line}} > M_{\text{line,crit}}$, filaments fragment \Rightarrow supercritical
- If $M_{\text{line}} < M_{\text{line.crit}}$, filaments are unbound \Rightarrow subcritical

IC5146

HGBS: FILAMENTS

FILAMENT WIDTH

Filament width as measured with Herschel

Skeleton of the filamentary network traced with DisPerSE algorithm (Sousbie 2011)

Filament width distribution peaks at ~ 0.1pc (independent of length or column density)

- sonic scale below which interstellar
 turbulence becomes subsonic
 (Federrath et al. 2010)
- ⇒ filaments may form via the dissipation of large-scale turbulence (Padoan et al. 2001)

Map-making Workshop, ESAC, Jan., 2013.

Arzoumanian et al.

(2011)

TAURUS

Highlights:

• Filaments and striations

HGBS: TAURUS

http://oshi.esa.int

Palmeirim et al. 2012 Kirk et al., subm.

Map-making Workshop, ESAC, Jan., 2013.

HGBS: TAURUS

STRIATIONS

Accretion onto filaments?

Evolution of velocity dispersion with column density (supercritical filaments) ⇒ suggests mass accretion from surrounding material (Arzoumanian et al., subm.; Palmeirim et al. 2013; Palmeirim et al., in prep.)

Taurus B211/B213 filament

Magnetic field is perpendicular to the main filaments (black) and parallel with the subcritical striations (blue) Palmeirim et al., 2012

Red- and blueshifted ¹²CO(1–0) emission from Goldsmith et al. 2008 (Palmeirim et al., 2012)

Map-making Workshop, ESAC, Jan., 2013.

Early results of the Herschel Gould Belt survey: a coherent star formation scenario

HGBS: SF SCENARIO FROM ORIONB, AQUILA, POLARIS DATA CORES SITTING IN DENSE FILAMENTS

Prestellar cores are preferentially found within the densest filaments

90% of prestellar cores (\triangle) found at N_{H2} > 7 x 10²¹ cm⁻² \Leftrightarrow A_{v, bq} > 7 Aquila curvelet N_H, map (cm⁻²) 1021 Unstable Mline line,crit \mathbf{pc} 3 0.1 Stable

The gravitational instability of filaments is controlled by the mass per unit length *M*_{line} (Ostriker 1964, Inutsuka & Miyama 1997):

• unbound if
$$M_{\text{line}} < M_{\text{line, crit}}$$

 $M_{\text{line, crit}} = 2c_{s}^{2}/\text{G} \sim 15 M_{\odot}\text{pc}^{-1}$, with $c_{s} \sim 0.2$ km/s at $T \sim 10$ K

$$\Leftrightarrow \Sigma_{\rm th} \sim 150 M_{\odot} {\rm pc}^{-2}$$

 \Leftrightarrow A_v ~ 7, given the filament width of ~ 0.1pc

Unstable filaments highlighted in white in the N_{μ_2} map (André at al. 2010)

HGBS: SF SCENARIO FROM ORIONB, AQUILA, POLARIS DATA

Suggested prestellar core formation scenario: in 2 main steps (André et al. 2010, 2011):

- 1) Filaments form first in the cold ISM, probably as a result of the dissipation of MHD turbulence (reflected in the 0.1 pc filament width)
- 2) The densest filaments then fragment into prestellar cores via gravitational instability above the approximately corresponding $A_{v,crit} \sim 5-7$ and $M_{line,crit} \sim 15 M_{\odot}/pc$ (T ~ 10K) thresholds.

Spectroscopic and polarimetric **follow-up observations** are planned to clarify the roles of turbulence, magnetic fields, gravity in forming the filaments.

HGBS: SF THRESHOLD FURTHER AWAY...

Importance of star formation threshold on (extra)galactic scales

 $\Sigma_{\rm SFR} \propto \Sigma_{\rm gas} \ ({\rm for} \ \Sigma_{\rm gas} > \Sigma_{\rm th})$

Heiderman et al. 2010, Lada et al. 2010

For external galaxies: Gao and Solomon 2004

MAP-MAKING ISSUES

HGBS: MAP-MAKING ISSUES

SPIRE stripes (enhanced with convolving maps)
 ⇒ gone with latest destriper

• Spire pixel resolution...

 Combination of fields, mosaicking Parallel-mode SPIRE maps (destriper, naive)

HGBS: MAP-MAKING ISSUES

Parallel/prime-mode PACS maps (HIPE-level1, Scanamorphos)

Asteroids in Taurus

 \Rightarrow _transient.fits maps created in Scanamorphos v12+ (not only for asteroids...)

HGBS: MAP-MAKING ISSUES

Parallel/prime-mode PACS maps (HIPE-level1, Scanamorphos)

 PACS: Mainly, if the field is big, I'm not applying 2nd order deglitching in HIPE, but in Scanamorphos.

• Car track pattern (Parasitic electrical interference?)

Thank You!

