

CMB Map-Making In The Era Of Planck

Julian Borrill

Computational Cosmology Center, Berkeley Lab & Space Sciences Laboratory, UC Berkeley

Idealized Map-Making

$$d_t = n_t + P_{tp} s_p$$

- Noise Gaussian
- Signal Sky-synchronous

$$d_{p} = (P_{tp}^{T} N_{tt'}^{-1} P_{t'p'})^{-1} P_{tp}^{T} N_{tt'}^{-1} d_{t'}$$
$$N_{pp'} = (P_{tp}^{T} N_{tt'}^{-1} P_{t'p'})^{-1}$$

- How we solve this in practice depends on
 - a) the actual properties of the observation data
 - b) computational tractability

Noise Properties

- 1. (Piecewise) Stationary noise
 - Required to estimate noise statistics
- 2a. (Block) Circulant approximation
 - $N_{tt'}^{-1}$ is diagonal in Fourier domain
 - Solve GLS equation
- 2b. Destriping approximation
 - n_t is white + offset over some interval (baseline)
 - Solve for baseline offsets, subtract & bin
- 2c. Hybrid
 - Solve for baseline offsets & subtract
 - Solve GLS equation for resulting timestream

Signal Properties

- Violations of sky-synchronicity (s_p constant)
 - Sub-pixel structure
 - pixelize well below beam scale
 - Bandpass mismatch
 - Beam asymmetry, mismatch, bandpass variation
 - incorporate into pointing weights
 - spatially varying multi-component sky
 - beam decomposition
 - ignore & deal with map residuals

Planck Map-Making Methods

- Maximum likelihood mapmakers
 - Require accurate noise statistics
 - Require optimization to run well
- Destriping mapmakers
 - No noise model needed (unless baselines are short)
 - Typically faster (unless baselines are short)
- Extensive comparison study between (most) map-making algorithms & implementations (eg. Ashdown et al)
- First release Planck maps (March 2013) will be destriped
 - Polkapix (HFI DPC): pointing period baselines
 - MADAM (LFI DPC): 1s baselines
 - MADAM/TOAST (HFI+LFI sims USPDC/NERSC)

Planck Maps

The following maps are made from SIMULATED DATA ONLY (but the FFP6 simulations are very realistic)

111111

BERKELEY LAB

FFP6 Nominal 30-353GHz T&P

FFP6 Nominal Submm T Maps

CMB Data Analysis

BUT map-making is only one step in the analysis:

- 1. Pre-processing (calibration, deglitching, flagging, etc)
- 2. Noise estimation
- 3. Map-making
- 4. Component separation
- 5. Power spectrum estimation
- 6. Parameter estimation

typically with iteration after each step.

Power Spectrum Estimation

- Decompose the sky into spherical harmonics and sum over m-modes for each I-mode ... but
 - Cut sky
 - Inhomogeneous noise
- Maximum likelihood methods:
 - Iterative maximization of Gaussian likelihood
 - Requires full pixel-pixel noise covariance matrix
 - Scales as $\mathcal{N}_{\rm p}{}^3$ cycles, $\mathcal{N}_{\rm p}{}^2$ memory, $\mathcal{N}_{\rm p}{}^2$ disk
- Monte Carlo methods:
 - De-biasing of pseudo spectrum with transfer function
 - Requires Monte Carlo set of map-realizations
 - Scales as \mathcal{N}_{t} cycles, \mathcal{N}_{p} memory, \mathcal{N}_{p} disk

CMB Datasets

• Fainter signals (smaller scale, polarization) require larger datasets to achieve necessary signal-to-noise

Experiment	Start Date	\mathcal{N}_{t}	\mathcal{N}_{p}	PS Method
COBE	1989	10 ⁹	10 ⁴	ML
BOOMERanG	2000	10 ⁹	10 ⁶	
WMAP	2001	10 ¹⁰	10 ⁷	
Planck	2009	10 ¹²	10 ⁹	
PolarBear	2012	10 ¹³	10 ⁷	MC
QUIET-II	2015	10 ¹⁴	10 ⁷	
CMBpol	2020+	10 ¹⁵	10 ¹⁰	

• CMB datasets grow with Moore's Law!

Monte Carlo Methods

For a given set of detectors and mission interval:

- CMB Monte Carlos:
 - Calculate effective beam
 - Convolve CMB map realizations with effective beam
 - => One-time TOD operation for all realizations
- Noise Monte Carlos:
 - Generate a realization of the noise timestreams
 - Map it
 - => TOD operations (simulation, mapping) for every realization

• Cost of generating a noise Monte Carlo set:

Number of realizations x (Cost per simulation + Cost per map-making) =

- $\mathcal{N}_{r} \text{ x (} \mathcal{N}_{t} + \mathcal{N}_{i} \text{ x } \mathcal{N}_{t} \text{)} \sim \mathcal{N}_{r} \text{ x } \mathcal{N}_{i} \text{ x } \mathcal{N}_{t}$
- For Planck:
 - $-10^4 \times 10^2 \times 10^{12} = 10^{18}$ flops
 - At 10% efficiency on 1GHz CPU => 10⁵ CPU-days!
- Massive parallelism is essential
 Only 1 day on 100,000 cores ☺

MAP

Achieving Efficiency At Scale

- Supercomputers have a hierarchy of efficiency: calculation > communication > input/output which gets (exponentially) worse with concurrency.
- Naïve approach:
 - For each realization
- Simulate detector timestreams (CALC)
 - Write detector timestreams (I/O)
 - Read detector pointings & timestreams (I/O)
 - For each iteration
 - Calculate local pixels (CALC)
 - Reduce distributed map (COMM)
 - Write distributed map (I/O)

I/O Optimization

- Remove redundant IO
 - generate simulations on-the-fly
 - Sim + Map => SimMap
 - read common data outside of MC realization loop
- Replace IO with calculation
 - read sparse boresight pointing
 - reconstruct dense detector pointing
- Reduces IO by a factor of:

realizations x detectors x data/pointing sampling ratio

~ $10^4 \text{ x } 10^2 \text{ x } 10^2 = 10^8 \text{ for Planck}$

COMM Optimization

- Time-ordered data are distributed across cores
 - driven by load-balancing & FFT locality
- Each core has *some* of the samples in *some* of the pixels.
- At each iteration these partial maps must be merged
 - each core needs sum of all samples in pixels it sees
- Reduce concurrency
 - Hybridize: MPI between nodes, threads on nodes
- Reduce communication volume
 - If most cores see most pixels => allreduce
 - If most cores see few pixels => all2allv

250x Speed-Up

16x Moore's Law (6,000 => 100,000 cores over 6 years) 16x code optimization (break/re-break I/O & comm bottlenecks)

143GHz Nominal Noise MC

ctp3.nmc.00000.sm2048.imap

-5.000E-05

+5.000E-05

Conclusions

- CMB map-making is driven by:
 - Very low signal-to-noise scanning observations
 ⇒ Very large number of samples
 - Very large Monte Carlo requirements
 ⇒ Massively parallel performance is critical
- The situation is only going to get worse!
 - Data volume growing with Moore's Law
 - Polarization requires exquisite control of systematics