
CMB Map-Making
In The Era Of Planck

Julian Borrill
Computational Cosmology Center, Berkeley Lab

& Space Sciences Laboratory, UC Berkeley

Idealized Map-Making

dt = nt + Ptp sp

•  Noise – Gaussian
•  Signal – Sky-synchronous

dp = (Ptp
T Ntt’

-1 Pt’p’)-1 Ptp
T Ntt’

-1 dt’

Npp’ = (Ptp
T Ntt’

-1 Pt’p’)-1

•  How we solve this in practice depends on

a)  the actual properties of the observation data
b)  computational tractability

Noise Properties
1. (Piecewise) Stationary noise

–  Required to estimate noise statistics

2a. (Block) Circulant approximation
–  Ntt’

-1 is diagonal in Fourier domain
–  Solve GLS equation

2b. Destriping approximation
–  nt is white + offset over some interval (baseline)
–  Solve for baseline offsets, subtract & bin

2c. Hybrid
–  Solve for baseline offsets & subtract
–  Solve GLS equation for resulting timestream

Signal Properties
•  Violations of sky-synchronicity (sp constant)

–  Sub-pixel structure
•  pixelize well below beam scale

–  Bandpass mismatch
–  Beam asymmetry, mismatch, bandpass variation

•  incorporate into pointing weights
– spatially varying multi-component sky
– beam decomposition

•  ignore & deal with map residuals

Planck Map-Making Methods
•  Maximum likelihood mapmakers

–  Require accurate noise statistics
–  Require optimization to run well

•  Destriping mapmakers
–  No noise model needed (unless baselines are short)
–  Typically faster (unless baselines are short)

•  Extensive comparison study between (most) map-making
algorithms & implementations (eg. Ashdown et al)

•  First release Planck maps (March 2013) will be destriped
–  Polkapix (HFI DPC): pointing period baselines
–  MADAM (LFI DPC): 1s baselines
–  MADAM/TOAST (HFI+LFI sims – USPDC/NERSC)

Planck Maps

The following maps
are made from

SIMULATED DATA ONLY
(but the FFP6 simulations

are very realistic)

FFP6 Single Survey 30GHz IQU

FFP6 Nominal 30-353GHz T&P

FFP6 Nominal Submm T Maps

CMB Data Analysis

BUT map-making is only one step in the analysis:

1.  Pre-processing (calibration, deglitching, flagging, etc)
2.  Noise estimation
3.  Map-making
4.  Component separation
5.  Power spectrum estimation
6.  Parameter estimation

typically with iteration after each step.

Power Spectrum Estimation
•  Decompose the sky into spherical harmonics and sum

over m-modes for each l-mode … but
–  Cut sky
–  Inhomogeneous noise

•  Maximum likelihood methods:
–  Iterative maximization of Gaussian likelihood
–  Requires full pixel-pixel noise covariance matrix
–  Scales as Np

3 cycles, Np
2 memory, Np

2 disk

•  Monte Carlo methods:
–  De-biasing of pseudo spectrum with transfer function
–  Requires Monte Carlo set of map-realizations
–  Scales as Nt cycles, Np memory, Np disk

CMB Datasets
•  Fainter signals (smaller scale, polarization) require larger

datasets to achieve necessary signal-to-noise

•  CMB datasets grow with Moore’s Law!

Experiment Start Date Nt Np PS Method
COBE 1989 109 104

ML
BOOMERanG 2000 109 106

WMAP 2001 1010 107

MC
Planck 2009 1012 109

PolarBear 2012 1013 107
QUIET-II 2015 1014 107
CMBpol 2020+ 1015 1010

Monte Carlo Methods
For a given set of detectors and mission interval:

•  CMB Monte Carlos:
–  Calculate effective beam
–  Convolve CMB map realizations with effective beam

=> One-time TOD operation for all realizations

•  Noise Monte Carlos:
–  Generate a realization of the noise timestreams
–  Map it

=> TOD operations (simulation, mapping)
 for every realization

The Computational Challenge
•  Cost of generating a noise Monte Carlo set:

Number of realizations x
(Cost per simulation + Cost per map-making)

=
Nr x (Nt + Ni x Nt) ~ Nr x Ni x Nt

•  For Planck:

–  104 x 102 x 1012 = 1018 flops
–  At 10% efficiency on 1GHz CPU => 105 CPU-days!

•  Massive parallelism is essential
–  Only 1 day on 100,000 cores J

•  Supercomputers have a hierarchy of efficiency:
 calculation > communication > input/output

which gets (exponentially) worse with concurrency.

•  Naïve approach:
–  For each realization

•  Simulate detector timestreams (CALC)
•  Write detector timestreams (I/O)

•  Read detector pointings & timestreams (I/O)
•  For each iteration

– Calculate local pixels (CALC)
– Reduce distributed map (COMM)

•  Write distributed map (I/O)

Achieving Efficiency At Scale

SIM

MAP

I/O Optimization
•  Remove redundant IO

–  generate simulations on-the-fly
•  Sim + Map => SimMap

–  read common data outside of MC realization loop

•  Replace IO with calculation
–  read sparse boresight pointing
–  reconstruct dense detector pointing

•  Reduces IO by a factor of:

 realizations x detectors x data/pointing sampling ratio
~ 104 x 102 x 102 = 108 for Planck

COMM Optimization
•  Time-ordered data are distributed across cores

–  driven by load-balancing & FFT locality
•  Each core has some of the samples in some of the pixels.
•  At each iteration these partial maps must be merged

–  each core needs sum of all samples in pixels it sees

•  Reduce concurrency
–  Hybridize: MPI between nodes, threads on nodes

•  Reduce communication volume
–  If most cores see most pixels => allreduce
–  If most cores see few pixels => all2allv

250x Speed-Up

16x Moore’s Law (6,000 => 100,000 cores over 6 years)
16x code optimization (break/re-break I/O & comm bottlenecks)

NUMA

MPI

143GHz Nominal Noise MC

Conclusions
•  CMB map-making is driven by:

–  Very low signal-to-noise scanning observations
⇒  Very large number of samples

–  Very large Monte Carlo requirements
⇒  Massively parallel performance is critical

•  The situation is only going to get worse!

–  Data volume growing with Moore’s Law

–  Polarization requires exquisite control of systematics

